Simulation of Canal and Control-Pond Operation at the Quivira National Wildlife Refuge, South-Central Kansas

By XIAODONG JIAN

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 97–4289

Prepared in cooperation with the KANSAS GEOLOGICAL SURVEY

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY
THOMAS J. CASADEVALL, Acting Director

The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

For additional information write to:

Copies of this report can be purchased

from:

District Chief

U.S. Geological Survey 4821 Quail Crest Place Lawrence, Kansas 66049–3839 U.S. Geological Survey Information Services Box 25286 Federal Center Denver, CO 80225–0826

CONTENTS

Abstract	1
Introduction	1
Purpose and Scope	4
Acknowledgments	4
Physical and Hydrologic Features of Quivira National Wildlife Refuge	4
Description of Refuge	4
Surface Water	4
Ground Water	
Physical Features of Control Ponds	5
Linear-Network Flow Model	11
Network Representation of Flow Systems	11
Rule-Curve and Zoning Concepts	11
Operating Policy	12
Mathematical Expression of Linear-Network Flow Model	14
Canal Routing	16
Pond-Storage Routing	17
General Node	18
Sink/Source Node	20
Linear-Network Optimization Flow Model	20
Model Supplements	21
Estimation of Canal Water Storage	21
Estimation of Canal-Flow Transmission Losses	21
Estimation of Direct Overland Surface Runoff	22
Flow Through Hydraulic Structures	23
Flow Over Sharp-Crested Weir	23
Flow Under Gate on Broad-Crested Weir	
Flow Under Gate on Spillway	23
Pipe Outflow	
Simulation of Canal and Control-Pond Operation for 1996	
Data Preparation	25
Precipitation	
Water-Surface Evaporation	
Canal Discharge	
Canal-Flow Transmission Losses	
Ground-Water Discharge to Ponds	
Pond Water-Surface Elevations	
Pond Zoning and Operating Policy	27
Results	30
Simulation of Canal and Control-Pond Operation for 1991 Water Year	33
Data Preparation	35
Precipitation	35
Water-Surface Evaporation	
Canal Discharge	
Canal-Flow Transmission Losses	
Ground-Water Discharge to Ponds	
Initial Water Storage in Ponds	
Pond Zoning and Operating Policy	
Results	

Sumr	nary		43
Appe	ndix A	A. General Description of OPONDS Computer Program	49
Appe	ndix l	B. Input/Output Instructions for OPONDS Computer Program	51
Appe	ndix (C. List of Selected Variables and Their Definitions	73
Appe	ndix l	D. Conceptual Sample Problem	81
		E. Computer Program Listing	
• •			
FIGL	JRES		
1.	Map	s showing location of Quivira National Wildlife Refuge, south-central Kansas	2
2.	Map	showing ponds and canals at Quivira National Wildlife Refuge	3
3.	Grap	oh showing relations of water-surface elevation, water volume, and water-surface area for Little Salt Marsh	12
4–10.		ematic diagram illustrating:	
		Network representation of flow systems at Quivira National Wildlife Refuge	13
	5.	Concepts of rule curve and pond zoning	
	6.	Concepts of canal-flow zoning.	
		Water balance in a canal reach and arc-node representation of canal-flow routing	
	8.	Arc-node representation for pond-storage routing	
	9.	Arc-node representation for a general node	
	10.	Flow through hydraulic structures	
11 14		phs showing:	24
11-12			
	11.	Daily precipitation, daily potential evapotranspiration, and daily mean discharge for Rattlesnake Creek,	20
	10	June 11 through December 11, 1996.	
		Water budget simulated for water unit 5, June 11 through December 11, 1996	32
	13.	Daily precipitation, daily potential evapotranspiration, and daily mean discharge for Rattlesnake Creek, 1991 water year.	36
	14.	Water budget simulated for water unit 5, 1991 water year	39
	15.	Simulated pond water storage with different rule curves for water unit 5 and water unit 78, with initial	
		storage at 80 percent of full-pond capacity, 1991 water year	42
16-17	7. Sch	ematic diagram illustrating:	
	16.	Overall structure of OPONDS computer program	50
	17.	Network representation of flow system for sample problem	
TABL	.ES		
1		rainage area and SCS curve number for control ponds at Quivira National Wildlife Refuge, south-central	
		ansas	
2		ound-water discharge to selected control ponds at Quivira National Wildlife Refuge for 1994	6
3	. Fu	ill-pond elevations, water-surface areas, and capacities for selected control ponds at Quivira National	
		ildlife Refuge	7
4	. Zo	onal elevation base and regression coefficients for elevation-volume-area relations of selected control	
	po	nds at Quivira National Wildlife Refuge	8
5	i. Cl	assification of antecedent soil-moisture conditions for SCS curve-number method of rainfall abstractions	23
6	. Re	esults of seepage tests along Rattlesnake Creek, 1996, at Quivira National Wildlife Refuge	27
		immary of water-surface elevations for selected ponds at Quivira National Wildlife Refuge, June 11	
,			28
Q		itial storage, zoning, and penalty coefficients assigned to control ponds at Quivira National Wildlife Refuge,	20
o			29
^			
-		nalty coefficients for canal flows at Quivira National Wildlife Refuge, June 11 through December 11, 1996	31
10		ater budgets simulated for selected control ponds at Quivira National Wildlife Refuge, June 11 through	٠.
			34
11		ater budget simulated for entire canal and control-pond system at Quivira National Wildlife Refuge,	
	Ju	ne 11 through December 11, 1996	35

TABLES—Continued

12.	Initial storage, rule curve, zoning, and penalty coefficients assigned to control ponds at Quivira National	
	Wildlife Refuge, 1991 water year	. 38
13.	Water budgets simulated for control ponds at Quivira National Wildlife Refuge with rule curve at 90 percent	
	of full-pond capacity, 1991 water year	. 40
14.	Water budget simulated for entire canal and control-pond system at Quivira National Wildlife Refuge with	
	rule curve at 90 percent of full-pond capacity, 1991 water year.	. 41
15.	Water budgets simulated for entire canal and control-pond system at Quivira National Wildlife Refuge	
	using different rule curves, 1991 water year	. 43
16.	List of file codes and descriptions for OPONDS computer program	. 51
17.	File format for master file in OPONDS computer program	. 52
18.	File format for general network configuration and parameters	. 52
19.	File format for initial pond condition and zoning	. 57
20.	File format for network flow configuration	
21.	File format for canal geometry and riverbed hydraulic parameters	. 59
22.	File format for outlet hydraulic-structure parameters	. 60
23.	File format for surface-runoff parameters	61
24.	File format for relations among water-surface elevation, volume, and water-surface area of ponds	6
25.	File format for regression relations of water-surface elevation, volume, and water-surface area of ponds	62
26.	File format for seasonal target water demands	63
27.	File format for seasonal water-surface evaporation coefficients	63
28.	File format for seasonal flow boundaries	. 64
29.	File format for seasonal pond rule curves	65
30.	File format for local net incremental inflows	65
31.	File format for precipitation data	66
32.	File format for time-dependent, water-surface evaporation coefficients	67
33.	File format for time-dependent, target water demand	67
34.	File format for time-dependent, pond rule-curve elevations	. 68
35.	File format for time-dependent flow boundaries	
36.	File format for ground-water elevations	
37	File format for fixed flows	70

CONVERSION FACTORS, ABBREVIATION, AND DEFINITIONS

Multiply	Ву	To obtain
acre	4,047	square meter
acre-foot (acre-ft)	1,233	cubic meter
acre-foot per day (acre-ft/d)	1,233	cubic meter per day
cubic foot per day (ft ³ /d)	0.02832	cubic meter per day
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second
foot (ft)	0.3048	meter
foot per day (ft/d)	0.3048	meter per day
foot per second (ft/s)	0.3048	meter per second
foot per second squared (ft/s ²)	0.3048	meter per second
		squared
inch (in.)	2.54	centimeter
inch per day (in/d)	25.4	millimeter per day
inch per year (in/yr)	25.4	millimeter per year
mile (mi)	1.609	kilometer
mile per day (mi/d)	1.609	kilometer per day
millimeter (mm)	0.03937	inch
millimeter per day (mm/d)	0.03937	inch per day
square foot (ft ²)	0.09290	square meter
square mile (mi ²)	2.590	square kilometer

Temperature can be converted to degrees Celsius (°C) or degrees Fahrenheit (°F) by the equations: $^{\circ}$ C = 5/9 ($^{\circ}$ F - 32), $^{\circ}$ F = 9/5 ($^{\circ}$ C) + 32.

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929.

Water year: Water year is the 12-month period October 1 through September 30. The water year is designated by the calender year in which it ends. Thus, the year ending September 30, 1991, is called the "1991 water year."

Simulation of Canal and Control-Pond Operation at the Quivira National Wildlife Refuge, South-Central Kansas

By Xiaodong Jian

Abstract

Efficient water management of the Quivira National Wildlife Refuge, located in the Rattle-snake Creek Basin of south-central Kansas, is a complicated task. In a cooperative study with the Kansas Geological Survey, the U.S. Geological Survey developed a computer-based water-budget and flow-routing model to assist the U.S. Fish and Wildlife Service in determining the outcome of possible water-management options. The computer model uses network analysis to determine the optimal operation of canals and control ponds on the refuge. Applications of the model are presented that investigate the daily operation of canals and control ponds on the refuge using historical discharges and pond water levels.

Simulation of the daily operation of the canal and control-pond system at the refuge from June 11 through December 11, 1996, was conducted using the computer model. Simulated pond water levels matched well with measured ones. The root mean square error (RMSE) between the simulated and measured water levels in ponds was less than 0.13 foot except for two ponds. Water storage in ponds during the simulation period was substantially reduced due to water-surface evaporation and canal-flow transmission losses. Simulation of canal and control-pond operation was also conducted with different target pond water levels. This simulation used 1991 discharge, precipitation, and water-surface evaporation data to consider model results during drought conditions. Results indicated that lowering target pond water levels reduced water-surface evaporation, resulted

in more water stored in ponds at the north end of the refuge, and caused a substantial decrease in the final volume of water stored in the main water-storage unit at the south end of the refuge (Little Salt Marsh).

INTRODUCTION

The Quivira National Wildlife Refuge is located in the Rattlesnake Creek Basin of south-central Kansas (fig. 1). The refuge was established in 1953 to provide food, water, and a resting place for waterfowl and certain endangered species during their annual migrations. To provide the proper type of feeding and resting areas for wildlife, water is diverted from Rattlesnake Creek into a system of canals and impoundments. There are more than 30 control marshes and ponds (collectively referred to hereinafter as ponds) (water units) ranging in size from 7 to 1,768 acres currently (1997) on the refuge, three main canals, and numerous smaller canals and waterways (fig. 2).

Water is managed to provide a mixture of marsh and wet-meadow habitat in and adjacent to the control ponds. Large ponds, such as Little Salt Marsh (water unit 5, fig. 2) at the south end of the refuge, provide habitat and serve as the main water-storage units on the refuge. It is difficult for the refuge manager to determine optimally how much water should be stored in the large ponds instead of being released to smaller ponds. Habitat losses occur when water is too deep in the larger ponds and also when there is insufficient water to supply the smaller ponds.

An additional complication in the surface-water management of the refuge results from ground-water inflows to the area. The north part of the refuge is within a ground-water discharge area, and some of the

Figure 1. Location of Quivira National Wildlife Refuge, south-central Kansas.

Figure 2. Ponds and canals at Quivira National Wildlife Refuge.

ponds receive a large part of their total water supply from ground-water sources (Megan Estep-Johnston, U.S. Fish and Wildlife Service, written commun., 1995). This is especially true of Big Salt Marsh (water unit 75, fig. 2). It is very difficult to determine the volume of water that is contributed to the refuge water supply from ground-water sources without a comprehensive simulation study.

Beginning in 1995, a 3-year study to develop a water-budget and flow-routing model to assist the U.S. Fish and Wildlife Service (USFWS) in determining the outcome of possible water-management options was begun by the U.S. Geological Survey (USGS) in cooperation with the Kansas Geological Survey (KGS). The objectives of the study were:

- To develop a network flow model that incorporates linear-programming techniques to determine efficient management strategies for water use.
- To provide simulation results using historic streamflow and water-level data.

The network flow model developed for this study can be adapted to any configuration of canals and ponds for similar water-management problems.

Purpose and Scope

The purpose of this report is to describe the development of a computer model to simulate the water budget and surface-water flow routing for the Quivira National Wildlife Refuge to help determine the effects of possible water-management options on the distribution of available water within the refuge. The report includes a description of a network model to simulate the water budget of the refuge and the routing of water throughout the refuge. The network flow model consisted of nodes and arcs, where a node was any location in the refuge where the water budget was computed. Nodes represented all ponds, joints of canals, and any other terrestrial areas of interest. Arcs connected the nodes and allowed simulation of water movement from one node to another. A linear-network flow technique was used to simulate flow through arcs.

This report also presents results of simulations of daily operation of canals and ponds based on 1996 and 1991 conditions. The simulation for 1996 was used to investigate pond operation with measured pond levels. The simulation for 1991 was used to investigate the operation of ponds under drought flow conditions with different simulated pond target levels.

Acknowledgments

The author thanks Marios Sophocleous and Greg Pouch of the Kansas Geological Survey for providing valuable data and suggestions. The author also thanks Megan Estep-Johnston of the U.S. Fish and Wildlife Service and Quivira National Wildlife Refuge personnel for providing crucial information and essential hydrologic data. Special thanks are given to David M. Wolock and Andrew C. Ziegler of the U.S. Geological Survey for their advice throughout the study.

PHYSICAL AND HYDROLOGIC FEATURES OF QUIVIRA NATIONAL WILDLIFE REFUGE

Description of Refuge

Quivira National Wildlife Refuge is located in south-central Kansas in northeast Stafford County (fig. 1). The refuge covers about 32 mi². It contains more than 30 control marshes and ponds ranging in size from 7 to 1,768 acres and about 21 mi of canals ranging in length from 0.1 to 7 mi (fig. 2).

The nearest climatic station to the refuge is at Hudson, 9 mi west of the refuge (fig. 1). The Hudson station records daily precipitation and temperature. The Sandyland Experiment Station (approximately 18 mi southwest of the refuge, fig. 1) is operated by the Kansas State University Agricultural Extension Office in Manhattan, Kansas, and has been recording hourly precipitation and temperature data for the last several years. Precipitation data also have been collected at the refuge headquarters (fig. 2) since 1996 and at the USGS streamflow-gaging station near Zenith (station 07142575, fig. 1).

Surface Water

The major source of water to the refuge is Rattle-snake Creek. Hourly streamflow of Rattlesnake Creek is recorded at USGS streamflow-gaging stations near Zenith (station 07142575) and near Raymond (station 07142620). The long-term, lowest, and highest annual mean discharges for Rattlesnake Creek near Zenith for the 1973 through 1995 water years were 50.6, 6.59, and 186 ft³/s, respectively (Putnam and others, 1996). For Rattlesnake Creek near Raymond, the long-term, low-

est, and highest annual mean discharges for the same period were 48.4, 2.77, and 190 ft³/s, respectively (Putnam and others, 1996).

In addition to the water supplied by Rattlesnake Creek, surface runoff to ponds generated by precipitation also plays an important role. The delineated drainage areas of the ponds are listed in table 1 (Marios Sophocleous, Kansas Geological Survey, written commun., 1997). These drainage areas were used for the calculation of overland surface runoff to the ponds. Surface runoff was estimated using the SCS curve-number method (Soil Conservation Service, 1985). SCS curve numbers for control ponds at Quivira National Wildlife Refuge also are listed in table 1. A description of the SCS curve-number method is found in the section "Estimation of Direct Overland Surface Runoff."

The refuge currently diverts water from the Little Salt Marsh (water unit 5), which is supplied by Rattle-snake Creek, into the main canal and into water units 7, 10A, 10B, 10C, and 11 (fig. 2). Water also flows from the Little Salt Marsh back into Rattlesnake Creek. Water in the creek flows north to water unit 24, where part of the water is diverted into the Darrynane Canal and into units 21 and 25. Some water flows into Rattlesnake Creek north of unit 24 and is transported to the west and north into the units north of County Road 484.

Ground Water

The ponds in the north part of the refuge are within a ground-water discharge area. Table 2 shows the estimated monthly ground-water discharge from shallow aquifers to ponds for 1994 (Marios Sophocleous, Kansas Geological Survey, written commun., 1997). These values were estimated using a previous ground-water simulation done by Sophocleous and Perkins (1992) and the delineated drainage area of the ponds (table 1). The total ground-water discharge to ponds for 1994 was about 6,200 acre-ft.

Physical Features of Control Ponds

Bottom elevations and full-pond capacities of control ponds are listed in table 3 (Megan Estep-Johnston, U.S. Fish and Wildlife, written commun., 1995). To express mathematically the elevation-volume-area relation of a pond, the pond storage was first divided into several water-depth zones. The number of zones

Table 1. Drainage area and SCS curve number for control ponds at Quivira National Wildlife Refuge, south-central Kansas

[SCS, U.S. Soil Conservation Service. Drainage areas and SCS curve numbers are from the Kansas Geological Survey (Marios Sophocleous, written commun., 1997)]

Water-unit number	Drainage area	SCS curve
(fig. 2)	(acres)	number
5	1,890.7	74.020
7	140.8	42.680
10A	84.9	48.397
10 B	201.4	47.575
10C	84.5	47.575
11	341.4	47.575
14A	149.9	71.217
14B	124.9	71.693
14C	59.5	33.552
16	180.0	40.753
20A	179.4	58.461
20B	116.4	73.101
21	60.0	76.469
22	82.5	45.543
23	43.8	46.615
24	259.9	51.636
25	226.7	55.711
26	194.7	67.952
28	228.4	38.659
29	78.9	60.995
30	69.0	61.968
40	207.2	42.018
48	305.6	73.499
49	137.4	71.000
55	582.8	72.250
57	257.5	69.910
58	186.7	62.831
61	258.8	71.481
62	90.4	52.546
63	201.4	71.000
75	5,621.7	69.583
78	635.9	70.544
80	187.1	70.544
81	620.9	70.544
83	149.4	70.544
Total	14,240.5	

[Data from Kansas Geological Survey (Marios Sophocleous, written commun., 1997). Negative numbers indicate that pond gains water from shallow aquifers] Table 2. Ground-water discharge to selected control ponds at Quivira National Wildlife Refuge for 1994

Water-unit				≥	onthly groun	Monthly ground-water discharge (acre-feet per day)	charge (acre	-feet per da	γ)				Total
number (fig. 2)	January	February	March	April	May	June	July	August	September	October	November	December	discharge (acre-feet)
5	1.30	1.36	1.42	1.51	1.46	1.49	1.60	1.51	1.52	1.60	1.57	1.59	545.00
10B	.16	.17	.17	.18	.18	.18	.19	.18	91.	.19	.18	.18	65.46
14B	05	05	05	05	05	05	05	05	05	05	05	05	-18.00
14C	69.	60:	60:	60.	60:	60:	.10	.10	.10	.10	.10	60:	34.33
20B	.04	.04	9.	90.	.04	90.	.04	.04	.04	9.	.00	.04	15.16
24	.56	.57	.56	.59	.56	.56	99:	.56	.55	.57	.54	.54	206.02
25	.24	.23	.23	.24	.23	.23	.24	.22	.22	.22	.21	.21	82.66
26	40.	90.	40.	.04	9.	9.	90.	9.	9.	40.	90.	.03	13.70
4	35	32	29	27	26	24	22	21	19	18	17	16	-86.52
49	.03	.04	.04	.05	.05	.05	.07	90.	90.	.07	.07	.07	20.33
28	49	49	48	49	48	47	48	47	47	46	46	46	-173.42
61	36	35	33	32	31	30	28	29	28	26	26	25	-109.43
62	24	23	22	21	20	19	18	18	17	17	16	16	-70.29
63	51	50	48	46	46	44.	42	43	42	40	40	39	-161.82
75	-14.20	-14.05	-13.95	-14.02	-13.86	-13.70	-13.81	-13.55	-13.45	-13.40	-13.28	-13.22	-5,006.67
78	-1.67	-1.65	-1.64	-1.65	-1.63	-1.61	-1.62	-1.59	-1.58	-1.57	-1.56	-1.55	-587.37
80	49	49	48	48	48	47	48	47	46	46	46	46	-172.86
81	-1.85	-1.83	-1.82	-1.83	-1.81	-1.78	-1.80	-1.76	-1.75	-1.74	-1.73	-1.72	-651.70
83	39	39	38	39	38	38	38	37	37	37	37	36	-137.91
Total	-18.14	-17.81	-17.53	-17.43	-17.27	-16.95	-16.84	-16.66	-16.47	-16.23	-16.15	-16.03	-6,193.33

Table 3. Full-pond elevations, water-surface areas, and capacities for selected control ponds at Quivira National Wildlife Refuge

[Data from U.S. Fish and Wildlife Service (Megan Estep-Johnston, written commun., 1995). BM, bench mark; ft, feet]

Water-unit number (fig. 2)	Bottom elevation (feet above sea level)	Full-pond	d elevation, in feet above sea level (datum location)	Full-pond surface area (acres)	Full-pond capacity (acre-feet)
5	1,780	1,783	(SPILLWAY)	864	1,866
7	1,774	1,778	(TOP OF STOPLOG SLOT)	26	40
10A&10B	1,774	1,779	(TOP OF STOPLOG SLOT)	64	145
10C	1,772	1,774.4	(TOP OF GAGE)	11	13
11	1,754	1,774.9	(SPILLWAY)	90	338
14A	1,772	1,778	(SPILLWAY)	87	196
14B	1,772	1,776.7	(SPILLWAY)	65	96
14C	1,774	1,777	(14C ¹ BM-0.67 ft)	7	16
16	1,768	1,775	(TOP OF STOPLOG SLOT)	31	80
20A	1,767	1,770.7	(SPILLWAY)	138	195
20B	1,767	1,770.7	(SPILLWAY)	138	195
21	1,764	1,770	(TOP OF STOPLOG SLOT)	30	81
22	1,764	1,766	(22A ¹ BM-0.6 ft)	10	13
23	1,762	1,764.3	(TOP OF GAGE)	9	15
24	1,765	1,769.4	(SPILLWAY)	31	35
25	1,762	1,768.4	(TOP OF GAGE)	94	296
26	1,758	1,762	(SPILLWAY)	59	111
28	1,762	1,768	(28A ¹ BM-0.86 ft)	85	153
29	1,757	1,762	(29C ¹ BM-0.58 ft)	61	91
30	1,756	1,759	high water	78	119
40	1,736	1,742.5	(40B ¹ BM-0.65 ft)	32	66
48	1,750	1,754.4	(SPILLWAY)	89	113
49	1,750	1,754.2	(SPILLWAY)	95	159
57	1,740	1,743.5	(57A ¹ BM-0.6 ft)	127	212
58	1,736	1,742	(58B ¹ BM-0.5 ft)	99	251
61	1,740	1,745.5	(62B ¹ BM-0.58 ft)	218	498
62	1,735	1,744	(TOP OF STOPLOG SLOT)	47	120
63	1,735 1,736	1,7 44 1,741.2	•	47 154	339
75	1,736	1,741.2	(TOP OF GAGE)	1,768	2,446
	2,,	1,7 .0.0	(SPILLWAY)	4,607	8,298
			Total	4,00/	0,270

¹Letters indicate structure names where water levels are measured.

were different for different ponds. For example, the number of zones for water unit 5 and water unit 24 were two and five, respectively (table 4). The bottom

elevation (above sea level) of each zone was called the zonal elevation base (Z_b) for the corresponding zone. The elevation-volume-area relation of a pond was rep-

Table 4. Zonal elevation base and regression coefficients for elevation-volume-area relations of selected control ponds at Quivira National Wildlife Refuge

[Data from U.S. Fish and Wildlife Service (Megan Estep-Johnston, written commun., 1995)]

101-4		Zonal elevation	Reg	ression coefficie	nts
Water-unit number		base, Z _b -			
(fig. 2)	Zone number	level)	A 1	A2	A3
5	1	1,780	1.0000	308.1200	110.4650
	2	1,782	1,059.0999	749.9802	56.9399
7	1	1,774	0	.1800	1.6575
	2	1,776	6.9900	6.8100	4.7775
	3	1,778	39.7200	25.9200	7.2600
10A	1	1,774	0	6.2900	4.5450
	2	1,776	30.7600	24.4700	3.6325
	3	1,778	94.2300	39.0000	12.252
10B	1	1,774	0	6.2900	4.5450
	2	1,776	30.7600	24.4700	3.6325
	3	1,778	94.2300	39.0000	12.2525
10C	1	1,772	0	3.6700	.682
	2	1,774	10.0700	6.4000	5.3450
11	1	1,754	0	.3000	.5050
	2	1,756	2.6200	2.3200	.5700
	3	1,758	9.5400	4.6000	.5875
	4	1,760	21.0900	6.9500	.697
	5	1,762	37.7800	9.7400	.7775
	6	1,764	60.3700	12.8500	.7150
	7	1,766	88.9300	15.7100	1.5075
	8	1,768	126.3800	21.7400	2.3025
	9	1,770	179.0700	30.9500	3.0025
	10	1,772	252.9800	42.9600	1.2850
14A	1	1,772	0	3.6700	1.7150
	2	1,774	14.2000	10.5300	7.9625
	3	1,776	67.1100	42.3800	11.0625
14B	1	1,772	0	.0800	2.5050
	2	1,774	10.1800	10.1000	9.5525
	3	1,776	68.5900	48.3100	12.1175
14C	1	1,774	0	.3000	2.6500
	2	1,775	2.9500	5.6000	.3400
16	1	1,768	0	.4700	.9075
	2	1,770	4.5700	4.1000	.9850
	3	1,772	16.7100	8.0400	4.5925
	4	1,774	51.1600	26.4100	2.3550

Table 4. Zonal elevation base and regression coefficients for elevation-volume-area relations of selected control ponds at Quivira National Wildlife Refuge—Continued

Nator-unit		Zonal elevation base, Z _b	Reg	ression coefficier	nts
Water-unit number (fig. 2)	Zone number	(feet above sea	A 1	A2	А3
20A	1	1,767	0	0.8800	0.8400
20A	2	1,768	1.7200	2.5600	20.9950
	3	1,769	25.2750	44.5500	35.8750
	4	1,770	105.7000	116.3000	15.8000
20 D		1.767	0	9999	0.400
20 B	1	1,767	0	.8800	.8400
	2	1,768	1.7200	2.5600	20.9950
	3	1,769	25.2750	44.5500	35.8750
	4	1,770	105.7000	116.3000	15.8000
21	1	1,764	0	1.4200	1.3675
	2	1,766	8.3100	6.8900	2.8300
22	1	1,764	0	3.4700	1.6350
	2	1,766	13.4800	10.0100	1.2825
23	1	1,762	0	3.7900	1.1625
	2	1,764	12.2300	8.4400	1.0625
24	1	1,765	0	.1600	.3700
	2	1,766	.5300	.9000	.6200
	3	1,767	2.0500	2.1400	3.5750
	4	1,768	7.7650	9.2900	6.8600
	5	1,769	23.9150	23.0100	10.3950
25	1	1,762	0	.4600	2.3875
25	2	1,764	10.4700	10.0100	15.9925
	3	1,766	94.4600	73.9800	4.1675
26	1	1,758	0	2.4800	5.4875
20	2	1,760	26.9100	24.4300	8.7050
	-	1,700	20.5100	2 1500	0.7000
28	1	1,762	0	.0400	.8125
	2	1,764	3.3300	3.2900	6.7775
	3	1,766	37.0200	30.4000	13.7275
29	1	1,757	0	.0600	.2650
	2	1,758	.3250	.5900	1.6500
	3	1,759	2.5650	3.8900	5.2800
	4	1,760	11.7350	14.4500	13.6450
	5	1,761	39.8300	41.7400	9.4300
	6	1,762	91.0000	60.6000	12.8350
30	1	1,756	0	1.6200	12.7325
40	1	1,736	0	.1900	.2350

Table 4. Zonal elevation base and regression coefficients for elevation-volume-area relations of selected control ponds at Quivira National Wildlife Refuge—Continued

		Zonal elevation	Reg	ression coefficie	nts
Water-unit number	Zono numbou	base, Z _b - (feet above sea	A 4	A0	A 2
(fig. 2)	Zone number	level)	A1	A2	A3
40	2	1,738	1.4400	1.2500	2.2725
	3	1,740	13.0300	10.3400	4.3375
	4	1,742	51.0600	27.6900	4.4375
48	1	1,750	0	.2700	.4750
	2	1,751	.7450	1.2200	2.1400
	3	1,752	4.1050	5.5000	14.3300
	4	1,753	23.9350	34.1600	21.3150
	5	1,754	79,4100	76.7900	15.6400
49	1	1,750	0	.4600	1.6450
	2	1,751	2.1050	3.7500	11.2350
	3	1,752	17.0900	26.2200	19.3450
	4	1,753	62.6550	64.9100	12.4750
57	1	1,740	0	5.5300	14.5825
	2	1,742	69.3900	63.8600	20.9075
58	1	1,736	0	2.2800	3.9775
	2	1,738	20.4700	18.1900	9.5700
	3	1,740	95.1300	56.4700	10.6425
61	1	1,740	0	10.2900	6.9975
	2	1,742	48.5700	38.2800	25.7175
62	1	1,735	0	.0100	.1000
	2	1,736	.1100	.2100	.1900
	3	1,737	.5100	.5900	.3150
	4	1,738	1.4150	1.2200	1.0550
	5	1,739	3.6900	3.3300	2.4350
	6	1,740	9.4550	8.2000	5.4750
	7	1,741	23.1300	19.1500	4.0800
	8	1,742	46,6360	27.3100	4.8150
63	1	1,736	0	.3800	6.0175
	2	1,738	24.8300	24.4500	24.6250
	3	1,740	172.2300	122.9500	13.0675
75	1	1,736	0	.3100	96.7650
, -	2	1,737	97.0750	193.8400	84.3200
	3	1,738	375.2350	362.4800	76.1350
	4	1,739	813.8500	514.7500	113.3850
	5	1,740	1,441.9851	741.5198	641.6354

resented by stepwise regression equations in terms of zonal water depth (Megan, Estep-Johnston, U.S. Fish and Wildlife, written commun., 1995):

$$V = A1 + A2 X + A3 X^2$$
, and (1)

$$A = A2 + (A3 + A3) X, (2)$$

where X is the zonal water depth and is equal to the difference between pond water-surface elevation (Z), in feet, and the corresponding zonal elevation base (Z_b) , in feet; that is, $X = Z - Z_b$. A1, A2, and A3 are regression coefficients, volume (V) is in acre-feet, and water-surface area (A) is in acres.

Table 4 summarizes the zonal elevation bases and corresponding regression coefficients of selected control ponds (Megan Estep-Johnston, U.S. Fish and Wildlife Service, written commun. 1995).

As an illustration of the use of these regression equations, consider water unit 5 as an example. Let the water-surface elevation Z be 1,782.5 ft. From table 4, the water surface is located in zone 2 because the water-surface elevation of 1,782.5 ft is higher than the zonal elevation base (Z_h) of 1,782 ft. Therefore, the zonal water depth (X) is 1,782.5 - 1,782.0 = 0.5 ft with the regression coefficients (A1, A2, and A3) of 1,059.0999, 749.9802, and 56.9399, respectively. Using equations 1 and 2, the corresponding water volume (V) and water-surface area (A) are 1,448.32 acre-ft and 806.92 acres, respectively. However, if the water-surface elevation Z is 1,781.0 ft, the corresponding zone number now is 1 with a zonal elevation base (Z_b) of 1,780 ft and regression coefficients (A1, A2, and A3) of 1.0000, 308.1200, and 110.4650, respectively. Therefore, the corresponding water volume (V) and water-surface area (A) are 419.59 acre-ft and 529.05 acres, respectively. Figure 3 shows the elevation-volume-area curves for Little Salt Marsh (water unit 5, fig. 2) using equations 1 and 2.

LINEAR-NETWORK FLOW MODEL

The optimal operation of the control ponds at the Quivira National Wildlife Refuge can be formulated mathematically as a linear-network flow problem (Jian, 1988; Yu and others, 1989). In this section, the mathematical formulation of a linear-network flow model (Jian, 1988) is modified and expanded. The concepts of

a rule curve for a pond and the zoning of pond storage and canal flow are introduced in this section. These two concepts are bases for formulating a network flow problem. The operating policy for a pond system in terms of priority and cost-penalty coefficients is also discussed. By combining the concepts of a rule curve and zoning and the operating policy, the problem of the operation of pond storage and flow routing can be formulated as a minimum-cost network flow problem, which is a typical topic in network flow analysis.

Network Representation of Flow Systems

To apply network flow analysis to the Quivira National Wildlife Refuge, the flow systems shown in figure 2 were conceptually represented by a network of nodes and arcs (fig. 4). The network was comprised of 67 nodes, of which 34 nodes are pond nodes (oval shape in fig. 4). Water unit 55 was shown as an oval in figure 4 and treated as a canal node because there was no pond information for that unit. Ninety-seven (97) arcs were used to represent canals or waterways on the refuge. Water unit 34 in figure 4 is a proposed pond for future use and is not currently (1997) in operation.

Rule-Curve and Zoning Concepts

A rule curve designated a target water level in a control pond. Using the zoning concept, a control pond at the refuge was divided into four storage zones—extended upper zone, upper zone, lower zone, and inactive zone—and the rule curve was set at the top of the lower zone (fig. 5). The extended upper zone was used during periods of flood. The upper zone and lower zone were called conservation zones and were used to represent normal use. The inactive zone represented the storage area filled up by sediment accumulation. The selection of the number of zones in a particular pond was based on management needs. For example, if the objective of management was to maximize water yields, the target water level (that is, rule curve) was set at the highest elevation of a pond so that high water levels could be maintained after satisfying downstream flow requirements and water demands.

Similarly, flow in a canal was also divided into an upper zone (that is, above-normal zone), a normal zone, and a lower zone (that is, below-normal zone) as shown in figure 6. The selection of the number of canal flow zones was also dependent on management needs.

Figure 3. Relations of water-surface elevation, water volume, and water-surface area for Little Salt Marsh (water unit 5, fig. 2).

Because flows in canals at the refuge are not regulated, one flow zone (normal) was used in the flow model development. In model simulations, canal flows were maintained in the normal flow zone as long as possible.

Operating Policy

Under ideal inflow conditions, all pond levels would be maintained at the target water levels (rule curves), and all canal flows would be maintained in the normal flow ranges in addition to satisfying water-management requirements such as minimum desirable streamflow (Kansas Water Office, written commun., 1996). In reality, ideal inflow conditions rarely occur. If a pond water level was higher or lower than its rule curve, a "cost" or "penalty" was assessed to the water storage or depletion deviation from the rule curve. The penalty depended on the amount of water deviation from the target level and the penalty coefficient (cost per unit water deviation from the target

level). A penalty was also assessed to canal flows. In other words, penalty coefficients were assigned to each storage zone of a pond and each flow zone in a canal to assess penalty.

Different penalty coefficients were assigned according to management priorities related to each storage zone of a pond. Penalty coefficients for canal flows were specified in a similar way. Higher penalty coefficients were assigned to the extended upper zone and inactive zone, and smaller penalty coefficients were assigned to the conservation zone (the lower zone and the upper zone) because water levels needed to be maintained in the conservation zone for normal use. The penalty coefficient in the normal-flow zone in a canal was generally zero or less than the penalty coefficient of the pond conservation zone. A higher penalty coefficient was assigned for violation of normal flow range; that is, the higher values of penalty coefficients were assigned to the upper and lower flow zones.

To optimally operate the canal and pond system at the refuge, it was necessary for some interpond rela-

Figure 4. Network representation of flow systems at Quivira National Wildlife Refuge.

Figure 5. Concepts of rule curve and pond zoning.

tions to be incorporated into the flow model. One of the relations was priority ranking of the ponds. Ponds were ranked according to some specified criteria by assigning different penalty coefficients to storage zones. The lowest priority pond was assigned the smallest penalty coefficient for the same-purpose storage zone; higher priority ponds had higher penalty coefficients. Using this relation, violation of the rule curve first occurred in the pond with the lowest priority. It was common for rule-curve violations to occur first in the downstream ponds rather than the upstream ones. This procedure minimized unnecessary spilling at the most downstream pond in the event of high lateral flows; that is, flows that did not enter the system through upstream ponds. The optimal operation of the canal and pond system minimized the total penalty assessed on the deviations of pond storage from the rule curve and of canal flows from specified normal flows.

Mathematical Expression of Linear-Network Flow Model

The flow network consisted of nodes and directed arcs. A node represented a location where the computation of the water budget was needed, such as at ponds and at canals where diversion of water occurred. An arc represented a stream or a canal along which water moved from one location to another. An arc was also used to represent a storage deviation of a pond or canal,

Figure 6. Concepts of canal-flow zoning.

and other additional contributions such as evaporation, seepage, and runoff.

The linear-network flow model was expressed mathematically as a linear programming problem of minimizing the total cost or penalty as follows:

Minimize
$$\sum_{i} \sum_{j} C_{ij} Q_{ij}$$
 for all (i,j) arcs, (3)

subject to
$$\sum_{i} Q_{ji} - \sum_{i} Q_{ij} = 0$$
 for all i nodes, and (4)

$$L_{ii} \le Q_{ii} \le U_{ii}$$
 for all (i,j) arcs, (5)

where

 Q_{ij} = flow in arc (i,j) from node i to node j;

 C_{ij} = cost per unit flow in arc (i,j), also called the penalty coefficient;

 L_{ij} = the lower flow boundary in any arc (i,j); and

 U_{ij} = the upper flow boundary in any arc (i,j).

Any flow (choice of the Q_{ij} 's) satisfying the constraints in equation 4 was called a conserving flow, accounting for mass conservation at the nodes. A conserving flow that satisfied the remaining constraints in equation 5 was a feasible flow (solution).

The objective of equation 3 for the operation of canals and control ponds was to minimize the total cost due to deviations from specified rule curves and canal flows. Equations 3–5 needed to incorporate the con-

A. Water balance in a canal reach

B. Arc-node representation of canal-flow routing

Figure 7. (A) Water balance in a canal reach and (B) arc-node representation of canal-flow routing.

cepts of rule curve and zoning to obtain the appropriate water-balance equation for any pond or canal reach.

Canal Routing

Considering a canal reach (i,j) with a length l_{ij} , the water balance in the canal (fig. 7A) during time period (t) was expressed as:

$$IQ_{ij}^{t} - OQ_{ij}^{t} - (SP_{ij}^{t} + EV_{ij}^{t}) = S_{ij}^{t} - S_{ij}^{t-1},$$
 (6)

where

 IQ_{ij}^{t} = inflow to a canal reach (i,j) during time period t;

 OQ_{ij}^{t} = outflow from a canal reach during time period t;

 $SP_{ij}^{\ t}$ = seepage along a canal reach during time period t. The amount of seepage depended on canal flow and hydraulic parameters. See section "Estimation of Canal-Flow Transmission Losses" later in this report.

 EV_{ij}^{t} = canal surface-water evaporation, which was estimated by:

$$EV_{ii}^{\ t} = e_{ii}^{\ t} A_{ii}^{\ t}, \tag{7}$$

in which $e_{ij}^{\ t}$ was the water-surface evaporation coefficient for time period t, and $A_{ij}^{\ t}$ was the water-surface area given by $A_{ij}^{\ t} = l_{ij} b_{ij}$, where l_{ij} and b_{ij} were the canal length and the width of the water surface, respectively.

 $S_{ij}^{\ t}$ = water storage in a canal reach at the end of time period t. Canal storage $S_{ij}^{\ t}$ depended on canal inflow and outflow, and canal hydrologic parameters. See section "Estimation of Canal Water Storage" using Muskingum's method (McCuen, 1989) later in this report.

 S_{ij}^{t-1} = water storage in a canal reach at the beginning of time period t.

In the concept of canal-flow zoning, canal flow may be in the normal, upper, or lower flow zone. The actual flow in a canal was denoted by Q and the normal flow by QN. The range of flow in the normal flow zone was $0 \le QN \le QN \le \overline{QN}$, where QN and \overline{QN} were the lower and upper boundaries of the normal flow range, respectively. If canal flow Q was in the upper flow zone, then the upper flow QU was defined as the flow deviation from the upper boundary of the normal

flow range; that is, $QU = Q - \overline{QN}$, and $0 \le QU \le \overline{QU}$, where \overline{QU} was the magnitude of the upper flow zone. In this case, $QN = \overline{QN}$, and Q = QN + QU. If canal flow (Q) was in the lower flow zone, then the lower flow (QL) was defined as the flow deviation from the lower boundary of the normal flow zone; that is, QL = QN - Q, and $0 \le QL \le \overline{QL}$, where \overline{QL} was the magnitude of the lower flow zone. In this case, $QN = \overline{QN}$, and Q = QN - QL. Therefore, the actual flow Q in a canal reach could be expressed as normal flow (QN), plus the upper flow (QU), and minus the

$$Q = QN + QU - QL. \tag{8}$$

If canal flow was in the normal flow zone, both QU and QL were equal to zero. If canal flow was in the upper zone, QL was zero. On the other hand, if canal flow was in the lower flow zone, QU was zero. Therefore, equation 8 represented all flow states in a canal.

Substituting equation 8 into equation 6 gave the canal water-balance equation as follows:

$$(IQN_{ij}^{\ t} + IQU_{ij}^{\ t} - IQL_{ij}^{\ t}) - (OQN_{ij}^{\ t} + OQU_{ij}^{\ t} - OQL_{ij}^{\ t}) - (SP_{ij}^{\ t} + EV_{ij}^{\ t}) = S_{ij}^{\ t} - S_{ij}^{\ t-1},$$
(9)

where

$$IQN_{ij}^{t} = \text{normal inflow } (0 \le \underline{QN}_{ij} \le IQN_{ij}^{t} \le \overline{QN}_{ij}),$$

$$IQU_{ij}^t = \text{ upper inflow } (0 \le IQU_{ij}^t \le \overline{QU}_{ij}),$$

$$IQL_{ij}^{t} = \text{lower inflow } (0 \le IQL_{ij}^{t} \le \overline{QL}_{ij}),$$

 OQN_{ij}^{t} = normal outflow

lower flow (QL); that is,

$$(0 \le \underline{QN}_{ij} \le OQN_{ij}^t \le \overline{QN}_{ij}),$$

$$OQU_{ij}^t$$
 = upper outflow $(0 \le OQU_{ij}^t \le \overline{QU}_{ij})$, and

$$OQL_{ij}^{t}$$
 = lower outflow $(0 \le OQL_{ij}^{t} \le \overline{QL}_{ij})$.

Each item in equation 9 could be represented by flow through a distinct arc (fig. 7B). If there was no water loss or storage change along the arc (i,j), then the actual flow between two neighboring nodes i and j was simplified as:

$$IQ_{ij}^{\ \ t} = OQ_{ij}^{\ \ t} = IQN_{ij}^{\ \ t} + IQU_{ij}^{\ \ t} - IQL_{ij}^{\ \ t}.$$
 (10)

Pond-Storage Routing

Using the concepts of rule curve and zoning of a pond, the actual storage of a pond i at time t, S_i^t , was represented as the sum of the rule-curve storage, RC_i^t , plus the storage deviation from the rule-curve storage, D_i^t ; that is,

$$S_i^t = RC_i^t + D_i^t, (11)$$

where

subscript i was the pond node index, and superscript t was the time period index.

In the concept of pond zoning, the storage deviation, D_i^t , was expressed as:

$$D_i^t = SU_i^t - SL_i^t, (12)$$

where

 SU_i^t = the actual storage deviation above the rule curve in the upper zone; that is, $SU_i^t = S_i^t - RC_i^t$, and $0 \le SU_i^t \le \overline{SU}_i$, where \overline{SU}_i was the total capacity of the upper zone in control pond i. If there were m upper zones, the upper deviation SU_i^t was calculated by:

$$SU_{i}^{t} = \sum_{k=1}^{m} SU_{i,k}^{t}, \tag{13}$$

where

 $SU_{i,k}^t$ was the water storage in the upper zone k. SL_i^t = the actual storage deviation from the rule curve in the lower zone; that is, $SL_i^t = RC_i^t - S_i^t$, and $0 \le SL_i^t \le \overline{SL}_i$, where \overline{SL}_i was the total capacity of the lower zone in pond i. If there were n lower zones, the lower deviation SL_i^t was calculated by:

$$SL_i^t = \sum_{k=1}^n SL_{i,k}^t$$
, (14)

where

 $SL_{i,k}^t$ was the water storage in the lower zone k. Only one of the two terms on the right side of equation 12 could be nonzero. In other words, if the pond water

level was in the upper zone, then $SL_i^t = 0$. On the other hand, if the pond water level was in the lower zone, then $SU_i^t = 0$.

Substituting equation 12 into equation 11 gave:

$$S_i^t = RC_i^t + SU_i^t - SL_i^t. \tag{15}$$

The water-balance equation (equation 3) for pond node i could then be rewritten as:

$$\sum_{i} OQ_{ji}^{t} - \sum_{i} IQ_{ij}^{t} + I_{i}^{t} + RN_{i}^{t} - EV_{i}^{t} - SP_{i}^{t} - W_{i}^{t} = S_{i}^{t} - S_{i}^{t-1}, (16)$$

where

 OQ_{ji}^{t} = canal inflow from the upstream node j during time period t.

 $IQ_{ij}^{\ \ t}$ = water release to downstream node j during time period t. Release was determined in terms of a downstream flow requirement, pond stage, and outlet control structure. See section "Flow Through Hydraulic Structures" later in this report.

 I_i^t = local net inflow to pond *i* during time period *t*.

 RN_i^t = precipitation falling onto the water surface (P_i^t) plus the direct overland surface runoff (RF_i^t) during time period t, given by:

$$RN_i^t = P_i^t + RF_i^t. (17)$$

Precipitation falling onto the water surface, in acre-feet, P_i^t , was estimated by:

$$P_i^t = 0.0833 \ r_i^t A_i^t \quad , \tag{18}$$

in which r_i^t was rainfall during time period t, in inches, and A_i^t was the water-surface area, in acres. Direct overland surface runoff (RF_i^t) was estimated using a SCS curve-number method (Soil Conservation Service, 1985). See section "Estimation of Direct Overland Surface Runoff" later in this report.

 EV_i^t = water-surface evaporation of pond *i* during time period *t* was estimated by:

$$EV_i^t = e_i^t A_i^t \quad , \tag{19}$$

in which e_i^t was the water-surface evaporation coefficient for time period t, and A_i^t was the pond water-surface area at the beginning of time period t. If the evaporation rate a_i^t was in inches per day and the water-surface area A_i^t was in acres, then total surface evaporation EV_i^t , in acre-feet, during time period t with time length of Δt days was calculated as follows:

$$EV_i^t = 0.0833 \ a_i^t A_i^t \Delta t. \tag{20}$$

 SP_i^t = seepage through the pond bottom, in acre-feet. Seepage was estimated using Darcy's equation:

$$SP_i^t = K_i \frac{Zsw_i^t - Zgw_i^t}{d_i} A_i^t \Delta t, \qquad (21)$$

in which K_i was the bottom hydraulic conductivity of pond i, in feet per day; Zsw_i^t was the surface-water elevation, in feet above sea level; Zgw_i^t was the groundwater elevation below the pond bottom, in feet above sea level; and d_i was the pond-bottom thickness, in feet.

 W_i^t = water withdrawal during time period t, in acre-feet.

 S_i^t = pond storage at the end of time period t, in acre-feet.

 S_i^{t-1} = pond storage at the beginning of time period t, in acre-feet.

Substituting equations 8 and 15 into equation 16 gave:

$$\sum_{j} \left(o \varrho N_{ji}^{t} + o \varrho U_{ji}^{t} - o \varrho L_{ji}^{t} \right) - \sum_{j} \left(I \varrho N_{ij}^{t} + I \varrho U_{ij}^{t} - I \varrho L_{ij}^{t} \right) + \qquad (22)$$

$$I_{i}^{t} + R N_{i}^{t} - S P_{i}^{t} - W_{i}^{t} = \left(R C_{i}^{t} + S U_{i}^{t} \right) - S_{i}^{t-1}.$$

Rearranging equation 22 gave:

$$\sum_{j} \left(OQN_{ji}^{t} + OQU_{ji}^{t} - OQL_{ji}^{t} \right) - (23)$$

$$\sum_{j} \left(IQN_{ij}^{t} + IQU_{ij}^{t} - IQL_{ij}^{t} \right) - SU_{i}^{t} + SL_{i}^{t}$$

$$+ (S_{i}^{t-1} + I_{i}^{t} + RN_{i}^{t} - RC_{i}^{t} - SP_{i}^{t} - EV_{i}^{t} - W_{i}^{t}) = 0.$$

At the beginning of time t, the values of S_i^{t-1} , I_i^t , RN_i^t , RC_i^t , SP_i^t , EV_i^t , and W_i^t were known or could be estimated using previous time-period data. If $NV_i^t = S_i^{t-1} + I_i^t + RN_i^t - RC_i^t - SP_i^t - EV_i^t - W_i^t$, the pond waterbalance equation became:

$$\sum_{i} \left(OQN_{ji}^{t} + OQU_{ji}^{t} - OQL_{ji}^{t} \right) - \tag{24}$$

$$\sum_{j} \left(IQN_{ij}^{t} + IQU_{ij}^{t} - IQL_{ij}^{t} \right) - SU_{i}^{t} + SL_{i}^{t} + NV_{i}^{t} = 0.$$

Each term in equation 24 was represented by flow through a distinct arc in the linear-network flow model. Among these arcs, the term NV_i^t was simply called a net-value arc (NV). Upper storage deviation arcs (SU), lower storage deviation arcs (SL), and NV arcs were connected to a sink/source node (fig. 8). The direction of SU arcs was from node i to the sink/source node. The direction of SL arcs was from the sink/source node to node i. The direction of NV arcs depended on the sign of the value of NV_i^t . If the value of NV_i^t was positive, the direction of the NV arc was from the sink/source node to the pond node i, and the reverse was true if the value of NV_i^t was negative (fig. 8).

General Node

A general node was designated where the calculation of water balance was needed (for example, at joints of canals). The difference between a pond node and a general node was that there was no water storage associated with a general node. The water balance at general node i during time t was given by:

$$\sum_{i} O Q_{ji}^{t} - \sum_{i} I Q_{ij}^{t} + I_{i}^{t} - W_{i}^{t} = 0, \qquad (25)$$

where

 OQ_{ji}^{t} = inflow from upstream node j to node i during time period t;

 IQ_{ij}^{t} = outflow from a general node *i* to the downstream node *j* during time period *t*;

 I_i^t = local net incremental inflow to node i, such as surface runoff; and

 W_i^t = water withdrawal at node *i* during time *t*. W_i^t was expressed as follows:

$$W_i^t = TR_i^t - DW_i^t, (26)$$

EXPLANATION

Figure 8. Arc-node representation for pond-storage routing.

in which TR_i^t was the target water-with-drawal from node i during time period t, and DW_i^t was the water withdrawal deviation for node i during time period t, $0 \le DW_i^t \le TR_i^t$.

Substituting equations 8 and 26 into equation 25 gave:

$$\sum_{j} \left(o_{Q} N_{ji}^{t} + o_{Q} U_{ji}^{t} - o_{Q} L_{ji}^{t} \right) -$$

$$\sum_{j} \left(I_{Q} N_{ij}^{t} + I_{Q} U_{ij}^{t} - I_{Q} L_{ij}^{t} \right) + I_{i}^{t} - \left(T R_{i}^{t} - D W_{i}^{t} \right) = 0.$$
(27)

Equation 27 is consistent with equation 4, and each term of equation 27 was represented by flow through a distinct arc (fig. 9). Among flows through these arcs, flows I_i^t and TR_i^t were known at the beginning of time t. The direction of the I_i^t arc depended on the sign of the value I_i^t . If it was positive, then the arc was directed toward the water demand node from the sink/source node. The reverse was true for a negative I_i^t . Because I_i^t and TR_i^t were known, the penalty coefficients of I_i^t and TR_i^t arcs were assigned to be zero.

EXPLANATION

Normal flow arc

$$QU_{ij}$$

Upper flow arc

 QL_{ij}

Lower flow arc

 DW_i

Water-withdrawal deviation arc

Figure 9. Arc-node representation for a general node.

Sink/Source Node

The sink/source node mentioned in previous sections was an introduced node that made it possible to form a closed-loop network. As a sink, this node accounted for: (1) flows from canal water loss (seepage and evaporation) and final water storage (fig. 7B), (2) flows from the storage deviation above the rule curve (fig. 8), (3) canal flows at the downstream end of the system, and (4) water withdrawal from a node (fig. 9). As a source, the sink/source node accounted for: (1) flows for the canal initial storages (fig. 7B), (2) flows for the storage deviations below the rule curves (fig. 8), (3) net inflows to ponds (fig. 8), and (4) net incremental flows to general nodes (fig. 9). The water balance for canal reaches, pond nodes, and general nodes guaranteed that mass conservation at a sink/source node was satisfied.

Linear-Network Optimization Flow Model

The linear-network flow model given by equations 3–5 was rewritten for the operation of canals and control ponds as follows:

Minimize

$$\sum_{i} \left(C_{i}^{u} S U_{i} + C_{i}^{l} S L_{i} \right)^{t} +$$

$$\sum_{i} \sum_{j} \left(C_{ij}^{n} Q N_{ij} + C_{uh}^{u} Q U_{ij} - C_{ij}^{l} Q L_{ij} \right)^{t} + \sum_{i} C_{i}^{w} D W_{i}^{t},$$
subject to

$$\sum_{j} (OQN_{ji} + OQU_{ji} - OQL_{ji})^{t} - (29)$$

$$\sum_{j} (IQN_{ij} + IQU_{ij} - IQL_{ij}) - (SU_{i} - SL_{i})^{t} + NV_{i}^{t} = 0$$

for all pond nodes i,

$$\sum_{j} \left(OQN_{ji}^{t} + OQU_{ji}^{t} - OQL_{ji}^{t} \right) - (30)$$

$$\sum_{j} \left(IQN_{ij}^{t} + IQU_{ij}^{t} - IQL_{ij}^{t} \right) + I_{i}^{t} - \left(TR_{i}^{t} - DW_{i}^{t} \right) = 0$$

for all general nodes i,

$$\left(IQN_{ij}^{t} + IQU_{ij}^{t} - IQL_{ij}^{t}\right) - \left(OQN_{ij}^{t} + OQU_{ij}^{t} - OQL_{ij}^{t}\right) - (31)$$

$$EV_{i}^{t} - SP_{i}^{t} = S_{i}^{t} - S_{i}^{t-1}$$

for canal flow arcs (i,j),

$$0 \le SU_i^t \le \overline{SU}_i, \tag{32}$$

$$0 \le SL_i^t \le \overline{SL}_i \quad , \tag{33}$$

$$0 \le \underline{QN}_{ij} \le QN_{ij}^t \le \overline{QN}_{ij}, \tag{34}$$

$$0 \le Q U_i^t \le \overline{Q} \overline{U}_i, \tag{35}$$

$$0 \le Q L_i^t \le \overline{Q} \overline{L}_i, \tag{36}$$

$$0 \le DW_i^t \le TR_i^t, \tag{37}$$

where $C_i^{\ u}$ and $C_i^{\ l}$ were the penalty coefficients for cost per unit; and the upper bars and lower bars in equations 32–37 were upper and lower flow boundaries of an associated arc.

Water storage deviated from the rule curve at pond node i for the upper zone and lower zone, respectively. $C_{ij}^{\ n}$, $C_{ij}^{\ u}$, and $C_{ij}^{\ l}$ denoted the penalty coefficients for cost per unit flow in canal ij for the normal, upper, and lower flow zones, respectively.

The linear-network optimization flow model given by equations 28–37 was a typical minimum-cost flow problem in network analysis. Several algorithms exist for solving a minimum-cost flow problem. One of the algorithms, called the out-of-kilter algorithm (Fulkerson, 1961; Bazaraa and others, 1990), was used in developing the computer program called OPONDS (the optimal Operation of a system of PONDS) developed for this study (see Appendices for the description and listing of the computer program).

Model Supplements

In the following section, the methods used in OPONDS to estimate canal water storage, canal-flow transmission loss, surface runoff, and flow through hydraulic structures are described.

Estimation of Canal Water Storage

The Muskingum's method (McCuen, 1989) was used to estimate canal storage in this study. The method assumes that, for given a reach, canal storage (S) can be expressed in terms of inflow and outflow rates as follows:

$$S = K[xI + (1-x)O], \tag{38}$$

where

- K = the storage constant defined by the ratio of storage to discharge. The storage constant K has the dimension of time; therefore, K is often called traveltime. The coefficients of K and x are generally determined using historical discharge data (Wu and others, 1985; Chow and others, 1988; McCuen, 1989);
- x = the dimensionless weighting factor for the storage effect of inflow and outflow. The value of x is usually between 0 and 0.5;

I = inflow rate; and

Q = outflow rate.

Estimation of Canal-Flow Transmission Losses

To estimate canal-flow transmission losses to an aquifer, two approximation methods were included in the computer program OPONDS. The first one was based on Darcy's equation given by:

$$q = K_b \frac{(Z_{sw} - Z_{gw})}{d} LB \quad , \tag{39}$$

where

q = canal seepage rate along canal reach;

 K_h = canal-bottom hydraulic conductivity;

 Z_{sw} = average canal surface-water elevation, which is the average water depth (h) plus the canal-bottom elevation (Z_h) ;

 Z_{gw} = average ground-water elevation below the canal bottom, which is the average value along the canal;

d = average canal-bottom thickness;

L = canal-reach length; and

B = canal water-surface width.

If a canal gained water from the aquifer, the seepage (q) in equation 39 was a negative number. If the ground-water elevation Z_{gw} was lower than the average canal-bottom elevation, then the seepage rate, q, was simplified as:

$$q = K_h h L B , (40)$$

where h was the average water depth in a canal reach.

The water depth h was estimated iteratively using Manning's equation (Henderson, 1966):

$$v = \frac{1.486R^{2/3}J^{1/2}}{n},\tag{41}$$

in which ν was the average velocity, in feet per second $[\nu = Q / A(h)]$; R was the hydraulic radius [R = A(h) / P(h)], in feet; A(h) was the cross-section area, in square feet; P(h) was the wetted perimeter in feet; J was the hydraulic slope; and n was the roughness coefficient, which is dependent on canal bottom materials.

The second approximation method (Jordan, 1977) assumed that the rate of canal-flow transmission loss at any point was proportional to the flow at that point and that the canal characteristics were uniform for a given reach; that is,

$$\frac{dQ_x}{dx} = -kQ_x,\tag{42}$$

where x was the distance coordinate, and k was the transmission loss per unit length of canal [1/L] and was simply called transmission loss coefficient.

For a given canal reach of length L, the transmission loss then was estimated by:

$$q = (1.0 - e^{-kL})IQ = c IQ,$$
 (43)

where IQ was the inflow entering a canal, and c was a transmission loss rate for a given canal reach of length L and was estimated using seepage test data with a least-squares technique or other techniques.

Estimation of Direct Overland Surface Runoff

The Soil Conservation Service (1985) developed a method for estimating direct overland surface runoff depth from precipitation. The runoff depth Q generated by precipitation P was given by:

$$Q = \frac{(P - 0.2S)^2}{P + 0.8S},\tag{44}$$

where S was the potential maximum retention (the amount of rain not converted to runoff after runoff begins) given by:

$$S = \frac{1000}{CN} - 10, \tag{45}$$

in which CN was the SCS curve number. The SCS curve number (CN) is an index that represents the combination of hydrologic soil group and land use. CN is a function of three factors—soil group, land-cover type, and antecedent moisture conditions. The range of CN is from 0 to 100. The curve number for average antecedent soil-moisture conditions (AMC II) can be interpreted for given soil properties and land-cover type (Soil Conservation Service, 1985; McCuen, 1989). For dry conditions (AMC I) and wet conditions (AMC III), equivalent curve numbers can be computed using the following equations (Chow and others, 1988):

$$CN(I) = \frac{4.2CN(II)}{10 - 0.058CN(II)},$$
 (46)

and

$$CN(III) = \frac{23CN(II)}{10 + 0.13CN(II)},$$
 (47)

where *CN(I)*, *CN(II)*, and *CN(III)* are the curve numbers for the dry, average, and wet conditions, respectively.

The range of antecedent moisture conditions for each class is shown in table 5 (Chow and others, 1988). The SCS curve numbers for average soil-moisture conditions for the Quivira National Wildlife Refuge are summarized in table 4 in an earlier section.

Flow Through Hydraulic Structures

Water releases from ponds are through hydraulic control structures. The amount of water release depends on several factors, such as the pond water level, hydraulic-structure types and sizes, and the operation of structures. In the following sections, flows through four types of structures are discussed.

Flow Over Sharp-Crested Weir

A sharp-crested weir consists of a vertical plate mounted at right angles to the flow and having a sharp-edged crest (fig. 10A). The discharge equation is:

$$Q = mb\sqrt{2g}H_o^{1.5}, (48)$$

where

Q = discharge over weir, in cubic feet per second;

m = discharge coefficient, which is dimensionless;

b = weir length, in feet;

 H_o = total energy head (= $H + v_o^2/2g$), in feet. If approaching velocity $v_o \approx 0$, then $H_o = H$, where H is the static water head on a weir, referred to as the weir crest; and

 $g = \text{gravity acceleration} (= 32.17 \text{ ft/s}^2).$

The discharge coefficient (m) for free discharge is a function of certain dimensionless ratios that describe the geometry of the canal and the weir (Hulsing, 1967). One simple expression for free discharge with no side contraction is (Henderson, 1966):

$$m = 0.4073 + 0.0533 (H/P)$$
, where $0 < H/P < 5$, (49)

in which P is the weir height (fig. 10A).

Flow Under Gate on Broad-Crested Weir

Flow under a vertical sluice gate on a broad-crested weir (fig. 10B) was calculated by:

Table 5. Classification of antecedent soil-moisture conditions (AMC) for SCS curve-number method of rainfall abstractions

[From Chow and others, 1988]

	Total 5-day anteced	lent rainfall (inches)
AMC	Dormant season	Growing season
Ī	Less than 0.5	Less than 1.4
II	0.5–1.1	1.4–3.1
Ш	More than 1.1	More than 3.1

$$Q = mbe \sqrt{2gH_a}, (50)$$

where e was the gate opening height, and the other terms had the same definitions as in equation 48.

If e/H > 0.65, flow was not affected by the gate. The discharge coefficient for the free outflow under the gate depended on the relative gate opening height (e/H) and was approximated by (Swamee, 1992):

$$m = 0.611 \left(\frac{1 - \frac{e}{H}}{1 + 15 \frac{e}{H}} \right)^{0.072}, \tag{51}$$

where e/H < 0.65.

Flow Under Gate on Spillway

Flow under a gate on a spillway was calculated by:

$$Q = mbe \sqrt{2gH_o}. (52)$$

The definition of variables in equation 52 is the same as equation 50. The discharge coefficient (m) for a standard spillway depended not only on the relative gate opening height (e/H) but also on the design water head (H_d) and design discharge coefficient (m_d) (U. S. Army Engineer Waterways Experiments Station, 1972). In the case that design water head and design coefficient were not available, the free outfall flow with a flat gate and sharp-crested edge of the gate facing downstream (fig. 10C) was approximated using the following equation (Chengdu Science and Technology University, 1979):

$$m = 0.65 - 0.186 (e/H). (53)$$

A. Sharp-crested weir.

B. Gate on broad-crested weir.

Figure 10. Flow through hydraulic structures.

Pipe Outflow

For free flow through a pipe (fig. 10D), the discharge was estimated by:

$$Q = mA\sqrt{2gH} \quad , \tag{54}$$

where A was the area of cross section of the pipe, H was the water depth above the water outlet, and the discharge coefficient (m) was given

by (Chengdu Science and Technology University, 1979):

$$m = \frac{1}{\sqrt{1 + \lambda \frac{l}{d} + \Sigma \zeta}},$$
 (55)

l was the length of the pipe, d was the diameter of the pipe, λ was the pipe friction coefficient that was determined by pipe

24 Simulation of Canal and Control-Pond Operation at the Quivira National Wildlife Refuge, South-Central Kansas

where

materials, and ζ was the entrance loss coefficient that was determined by the shape of the entrance.

SIMULATION OF CANAL AND CONTROL-POND OPERATION FOR 1996

From June 11 through December 11, 1996, personnel at the Quivira National Wildlife Refuge measured water-surface levels about four or five times a month for most ponds. Streamflow discharges at the Rattlesnake Creek near Zenith and Raymond streamflow-gaging stations were measured continuously by USGS; however, the discharges in canals on the refuge were not measured. A simulation was conducted to determine the operation of canals and control ponds under 1996 conditions. The major objective was to determine the operation policy for canals and control ponds on the refuge so that the simulated pond water levels would match well with the measured water levels. The basic approach was to use the measured pond water levels as the pond rule curve, to set up pond zoning and the priority relations of control ponds, to determine pond releases to canals or other ponds to satisfy the measured discharges of Rattlesnake Creek near Raymond, and to examine simulated water levels for those ponds without water-level measurements. In the following sections, the data and the related necessary assumptions needed to conduct the simulation are discussed, the operation policy of ponds is discussed, and the simulation results are presented.

Data Preparation

In this section, data needed for the simulation are discussed. Measurement data were used if available. If some data were not available, reasonable values were estimated from other sources.

Precipitation

The amount of precipitation directly affects the surface runoff to ponds. Daily precipitation measured at the refuge headquarters from June 11 through December 11, 1996, is shown in figure 11A (Marios Sophocleous, Kansas Geological Survey, written commun., 1997). The total amount of precipitation for the period was 13.96 in.

Water-Surface Evaporation

The daily potential evapotranspiration (PET) (Marios Sophocleous, Kansas Geological Survey, written commun., 1997) is shown in figure 11B. It was assumed that the daily water-surface evaporation rates on the refuge were the same as the corresponding daily potential evapotranspiration. The total water-surface evaporation for the simulation period was 25.21 in.

Canal Discharge

Discharge for Rattlesnake Creek measured at the USGS streamflow-gaging stations near Zenith and Raymond from June 11 through December 11, 1996, is shown in figure 11*C*. The mean daily discharge rates for the simulation period were 48.72 and 47.73 ft³/s for the Zenith and Raymond stations, respectively.

For this simulation, the daily mean discharges observed at the USGS Zenith station were used as water supply from Rattlesnake Creek to Little Salt Marsh. The daily mean discharges observed at the USGS Raymond station were used as the required stream outflow from the refuge through Rattlesnake Creek.

Canal-Flow Transmission Losses

Flow transmission losses from canals on the refuge were difficult to estimate. Personnel from the refuge did four seepage tests (table 6) along a 15,129-ft reach of Rattlesnake Creek downstream from Little Salt Marsh during 1996 (see fig. 2). Applying the least-squares method to equation 43, the estimated transmission loss coefficient (k) (equation 42) was equal to 9.16 x 10⁻⁶ ft⁻¹. Due to a lack of data for the remaining canals on the refuge, this value of k was used for the estimation of flow transmission loss rate c (equation 43) for all canals south of the RC Canal. Because canals north of the RC Canal are located in the ground-water discharge area, no canal-flow transmission losses occurred for these canals. The ground-water discharge to these canals was included in discharge to ponds (see table 2).

Ground-Water Discharge to Ponds

Ground-water discharge to ponds on the refuge during the simulation period was not available. Instead, ground-water discharges to ponds based on information provided by Marios Sophocleous (Kansas

Figure 11. (A) Daily precipitation, (B) daily potential evapotranspiration, (C) daily mean discharge for Rattlesnake Creek, June 11 through December 11, 1996. Precipitation and potential evapotranspiration data from the Kansas Geological Survey (Marios Sophocleous, written commun., 1997).

Table 6. Results of seepage tests along Rattlesnake Creek, 1996, at Quivira National Wildlife Refuge

[Data from U.S. Fish and Wildlife Service (Megan Estep-Johnston, written commun., 1996). ft³/s, cubic feet per second]

	Discharç	ge (ft ³ /s)
Date (month/day/ year)	Upstream test site 1 (fig. 2)	Downstream test site 2 (fig. 2)
06/26/96	6.93	6.15
07/17/96	8.98	7.46
07/24/96	3.13	2.92
09/09/96	5.52	5.12

Geological Survey, written commun., 1997) for 1994 were used (table 2).

Pond Water-Surface Elevations

Water-surface elevations for selected control ponds were measured during the simulation period. Table 7 lists the ponds with measured water-surface elevations, the number of measurements, and the minimum and maximum water-surface elevations for the ponds. Because the water levels may be at the bottom of ponds or above the staff gage at ponds, the number of observations of water-surface elevations listed in table 7 may be different than the number of measurements listed. The difference between the number of observations and the number of measured elevations is the number of records without measurements. Those water-surface elevations observed outside the range of measurement on pond staff gages were treated accordingly as the pond-bottom elevation or the full-pond elevation in this simulation.

Pond Zoning and Operating Policy

Each control pond was divided into four storage zones—inactive zone, lower zone, upper zone, and extended upper zone as shown in figure 5. Target water levels (rule curves) were set at the top of the lower zone. For ponds with measured water-surface elevations (table 7), the measured water elevations were used as their rule curves, which indicates that the rule curves changed during the simulation period and so did the storage capacity of lower and upper zones. For those ponds without measured water levels, the rule curves were set at 95 percent of their corresponding

full-pond storage capacities. The capacity of the inactive zone of a pond was set at 20 percent of full-pond storage capacity (selected in consultation with the U.S. Fish and Wildlife Service). Some of the rule curves for some ponds with measured water levels were located in the inactive zone during the simulation. In this case, the top boundary of the inactive zone capacity was set at the rule curve, and the capacity of the lower zone was set to zero. The top boundary of the upper zone was set at the full-pond elevation. The top boundary of the extended upper zone was set 0.5 ft higher than its full-pond elevation. For ponds whose maximum measured water levels were higher than the full-pond elevation plus 0.5 ft, the top boundaries of the extended upper zone were set at the maximum measured water level. Pond zoning expressed as pond storage is summarized in table 8.

To operate the system of canals and control ponds on the refuge, it was necessary to establish the priority of the ponds. Because Little Salt Marsh (water unit 5), which is supplied by Rattlesnake Creek, serves as the principal water-storage unit for the entire refuge, the highest operational priorities were given to its storages zones. Water units (75, 78, 80, 81, and 83, see fig. 2) in the north part of the refuge were given the lowest operational priorities because these ponds are at the downstream end of the refuge and control less drainage area. The remaining ponds were given priorities in between the highest and the lowest priorities. Under this operating policy, water to satisfy the downstream water requirements was released first (1) from the lowest priority ponds when water levels at the highest priority ponds were below the rule curve so that high-priority pond water levels were as close as possible to their rule curves, or (2) from the highest priority ponds when their water levels were higher than the rule curves so that the water levels would decrease to as close to their rule curves as possible. To represent priorities of ponds, different penalty coefficients were assigned to each of the storage zones of the ponds. The higher the priority, the higher the penalty coefficient assigned. It should be noted that the relative magnitudes, not the absolute values, of the penalty coefficients determined the optimal operation of the system. Different combinations of assigned values of penalty coefficients were tested for the control ponds on the refuge. Typical values of penalty coefficients used in this simulation are summarized in table 8.

Because there are no flow requirements such as minimum-required flow for canals on the refuge, there

Table 7. Summary of water-surface elevations for selected ponds at Quivira National Wildlife Refuge, June 11 through December 11, 1996

[Data from U.S. Fish Wildlife Service, written commun., 1997]

Water-unit number (fig. 2)	Number of observations	Number of measurements	Maximum measured elevation (feet above sea level)	Minimum measured elevation (feet above sea level)	
5 30		30	1,783.30	1,782.62	
7	30	23	1,778.96	1,777.33	
10A	30	16			
10 B	30	29	1,778.89	1,777.32	
10C	32	32	1,774.86	1,773.22	
11	32	14	1,773.91	1,771.95	
14A	30	30	1,777.92	1,776.30	
14 B	30	30	1,777.36	1,774.90	
16	30	28	1,774.46	1,772.72	
20A	29	29	1,770.84	1,769.56	
21	29	17	1,769.09	1,767.00	
22	29	29	1,767.17	1,764.91	
23	29	27	1,764.78	1,763.02	
24	30	30	1,770.46	1,769.61	
25	33	20	1,766.92	1,763.16	
26	28	28	1,762.06	1,760.14	
28	30	17	1,767.81	1,764.10	
29	30	26	1,761.83	1,757.20	
30	30	30 17		1,756.48	
40	29	22	1,742.59	1,738.58	
48	48 29		1,754.28	1,750.88	
49	29	29	1,754.13	1,750.25	
58	30	30	1,740.90	1,739.59	
61	29 29		1,743.89	1,742.54	
62	29	29	1,742.64	1,739.55	
63	29	29	1,740.73	1,739.17	
75	29	7	1,740.17	1,739.55	

Table 8. Initial storage, zoning, and penalty coefficients assigned to control ponds at Quivira National Wildlife Refuge, June 11 through December 11, 1996

Water-unit number (fig. 2)	initiai storage (acre-feet)	Upper boundary of extended upper zone (acre-feet)	Penaity coefficient for extended upper zone	Upper boundary of upper zone (acre-feet)	Penalty coefficient for upper zone	Lower boundary of iower zone (acre-feet)	Penaity coefficient for iower zone	Lower boundary of inactive zone (acre-feet)	Penaity coefficient for inactive zone
5	1,988.26	2,312.18	2,000	1,866.00	1,500	373.20	1,500	1.00	5,000
7	39.72	72.90	2,000	40.00	1,500	8.00	1,000	1.00	2,000
10A	145.48	180.30	2,000	145.00	1,500	29.00	1,000	1.00	2,000
10 B	145.48	180.30	2,000	145.00	1,500	29.00	1,000	1.00	2,000
10C	19.54	21.81	2,000	13.00	1,500	2.60	1,000	1.00	2,000
11	388.37	440.07	2,000	338.00	1,500	67.60	1,000	1.00	2,000
14A	161.70	242.20	2,000	196.00	1,500	39.20	1,000	1.00	2,000
14B	93.40	185.74	2,000	96.00	1,500	19.20	1,000	1.00	2,000
14C	15.51	19.07	2,000	16.00	500	3.20	500	1.00	2,000
16	62.67	96.07	2,000	80.00	1,500	16.00	1,000	1.00	2,000
20A	163.88	268.01	2,000	195.00	1,500	39.00	1,000	1.00	2,000
20B	163.88	268.01	2,000	195.00	1,500	39.00	1,000	1.00	2,000
21	34.34	96.62	2,000	81.00	1,500	16.20	1,000	1.00	2,000
22	2.30	18.81	2,000	13.00	1,500	2.60	1,000	1.00	2,000
23	15.41	19.66	2,000	15.00	1,500	3.00	1,000	1.00	2,000
24	132.55	139.01	2,000	35.00	1,500	7.00	1,000	1.00	2,000
25	18.00	344.05	2,000	296.00	1,500	59.20	1,000	1.00	2,000
26	91.48	142.39	2,000	111.00	1,500	22.20	1,000	1.00	2,000
28	6.11	198.82	2,000	153.00	1,500	30.60	1,000	1.00	2,000
29	0.20	124.51	2,000	91.00	1,500	18.20	1,000	1.00	2,000
30	2.82	161.64	2,000	119.00	1,500	23.80	1,000	1.00	2,000
40	55.91	83.19	2,000	66.00	1,500	13.20	1,000	1.00	2,000
48	3.94	161.19	2,000	113.00	1,500	22.60	1,000	1.00	2,000
49	51.63	209.05	2,000	159.00	1,500	31.80	1,000	1.00	2,000
57	212.22	280.74	2,000	212.00	1,500	42.40	1,000	1.00	2,000

Table 8. Initial storage, zoning, and penalty coefficients assigned to control ponds at Quivira National Wildlife Refuge, June 11 through December 11, 1996—Continued

Water-unit number (fig. 2)	Initial storage (acre-feet)	Upper boundary of extended upper zone (acre-feet)	Penalty coefficient for extended upper zone	Upper boundary of upper zone (acre-feet)	Penalty coefficient for upper zone	Lower boundary of lower zone (acre-feet)	Penalty coefficient for lower zone	Lower boundary of inactive zone (acre-feet)	Penalty coefficient for inactive zone
58	146.39	302.82	2,000	251.00	1,500	50.20	1,000	1.00	2,000
61	212.80	613.17	2,000	498.00	1,500	99.60	1,000	1.00	2,000
62	48.58	145.00	2,000	120.00	1,500	24.00	1,000	1.00	2,000
63	268.98	419.01	2,000	339.00	1,500	67.80	1,000	1.00	2,000
75	2,445.85	3,490.32	1,000	2,446.00	500	489.20	500	1.00	2,000
78	5,270.43	6,091.37	1,000	5,270.00	500	1,054.00	500	1.00	2,000
80	355.20	474.34	1,000	355.00	500	71.00	500	1.00	2,000
81	25.31	60.68	1,000	25.00	500	5.00	500	1.00	2,000
83	314.34	419.31	1,000	314.00	750	62.80	750	1.00	2,000

was only one flow zone for canals designated in this simulation. It was assumed that flow through a canal reach ranged in magnitude from zero to the full capacity of the canal. Because of the complexity of the canal flow network on the refuge, flows could reach the same location through different routes of canals. Different penalty coefficients were assigned to the flow zones of canals so that the most efficient route could be determined by minimizing the total penalty applied to canal flows. However, costs of transporting water through canals were not available. Because Rattlesnake Creek is used as the major route to distribute water to the refuge and because other canals are used only when necessary, flows through Rattlesnake Creek and canals downstream from control ponds were assigned penalty coefficients of zero, and the remaining canals were assigned nonzero penalty coefficients as shown in table 9 (see figures 2 and 4 for nodal names, location, and flow network).

Results

The simulation of canal and control-pond operation at the Quivira National Wildlife Refuge for June 11 through December 11, 1996, was conducted using the following specifications for pond zoning, operating policy, and canal outflow from the refuge: (1)

four storage zones for each pond, with the inactive storage of 20 percent of full-pond storage capacity; (2) rule curves set at the measured water levels for ponds with measurements, otherwise at 95 percent of full-pond storage capacity; (3) initial storage in ponds interpreted from the water levels measured on June 10, 1996, for ponds with measurements, otherwise set at 95 percent of full-pond storage capacity; and (4) outflows from the refuge through Rattlesnake Creek near the USGS streamflow-gaging station near Raymond equal to the observed discharges at the streamflow-gaging station (fig. 11C).

Figures 12A-D show the water-budget components simulated for the operation of water unit 5. Similar figures also can be generated for other control ponds. Inflows shown in figure 12A are upstream inflows from Rattlesnake Creek, which are equal to the discharges observed at the USGS streamflow-gaging station near Zenith. Total downstream releases shown in figure 12C are the summations of releases to all downstream nodes (water units 7 and 10A, and nodes C-2 and JE-1, see figure 4). Ground-water seepage during the simulation period shown in figure 12B is almost the same for the whole simulation period (the values were estimated for 1994, see table 2). Figure 12E shows the simulated and measured water stages and depths. From July 9 to August 8, even though there were no releases from the pond, the simulated water stages were lower than the

Table 9. Penalty coefficients for canal flows at Quivira National Wildlife Refuge, June 11 through December 11, 1996

Ca	anal		Ca	nal		Canal		
From-node name (fig. 4)	To-node name (fig. 4)	Penalty coefficient	From-node name (fig. 4)	To-node name (fig. 4)	Penalty coefficient	From-node name (fig. 4)	To-node name (fig. 4)	Penalty coefficient
Zenith	Unit 5	0	Unit 24	Unit 21	10	Unit 61	JE-4	0
Unit 5	Unit 7	10	Unit 24	Unit 20B	1,000	Unit 63	JE-5	0
Unit 5	Unit 10A	10	Unit 25	JE-2	10	Unit 63	JE6	0
Unit 5	JE-1	0	Unit 25	Unit 26	10	Unit 75	Unit 78	10
Unit 5	C-2	10	Unit 26	48E	10	Unit 78	Unit 81	10
Unit 7	Unit 10B	10	48E	Unit 48	0	Unit 81	Unit 80	10
Unit 10A	Unit 10B	10	48E	Unit 49	0	Unit 80	JN-1	0
Unit 10B	Unit 10C	10	Unit 28	Unit 29	10	Unit 83	JN-1	0
Unit 10C	Unit 11	10	Unit 29	Unit 30	10	JN-1	JE-7	0
Unit 11	SKSC1	1,250	Unit 30	WCE	10	DCC	DCF	100
C-2	F-1	0	WCE	Unit 48	0	DCC	SKSC ¹	5,000
C-2	D-1	0	WCE	RCD	0	DCF	40C	100
F-1	F-2	0	Unit 48	Unit 49	10	DCF	JE-0	100
F-1	Unit 14B	0	Unit 48	Unit 55	10	JE-0	37	100
D –1	Unit 14A	0	Unit 49	RCB	10	37	39	100
D-1	WCA	0	Unit 49	JE-3	10	39	JE-9	100
Unit 14A	UNIT 16	10	Unit 55	RCC	0	40C	Unit 40	0
Unit 14A	J14	10	Unit 55	RCF	0	40C	Unit 62	0
Unit 14B	J14	10	JE-1	Unit 24	0	Unit 40	JE-8	10
Unit 14B	Unit 20B	10	JE-2	JE-3	0	Unit 62	JE-5	10
J14	Unit 20A	0	JE-3	RCA	0	Unit 62	Unit 40	10
F-2	Unit 14C	0	RCA	RCB	0	JE-4	JE-5	0
F-2	Unit 20B	0	RCA	JE-4	0	JE-5	JE-6	0
Unit 14C	JE-1	0	RCB	Unit 61	0	JE-6	JE-7	0
Unit 16	WCA	10	RCB	RCC	0	JE-7	JE-8	0
WCA	Unit 28	10	RCC	RCF	0	JE-8	JE-9	0
Unit 20A	Unit 21	10	RCF	Unit 57	0	JE-9	JE-10	0
Unit 20B	Unit 20A	10	RCF	RCD	0	JE-10	RAYMOND	0
Unit 21	Unit 22	10	RCD	Unit 58	0	RAYMOND	SKSC ¹	0
Unit 22	Unit 23	10	Unit 57	Unit 78	10			
Unit 23	Unit 26	10	Unit 58	Unit 75	10			
Unit 24	Unit 25	10	Unit 58	Unit 78	10			
Unit 24	JE-2	0	Unit 61	Unit 57	10			
Unit 24	DCC	100	Unit 61	Unit 63	10			

 $^{\rm l}{\rm Nodal}$ name SKSC is used to specify that the end node of a canal is outside the refuge.

Figure 12. Water budget simulated for water unit 5, June 11 through December 11, 1996.

measured ones. The differences in stages were about 0.1 to 0.2 ft. The cause of these differences might be errors in reading stage and in estimating water-surface evaporation. The simulated water levels matched well with measured ones for the simulation period. The root mean square error (RMSE) between the simulated (\hat{Z}) and measured (Z) water levels was 0.08 ft for water unit 5 (see equation 56; n is the number of comparisons):

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (\hat{z}_i - Z)^2}{n}}.$$
 (56)

Similar results were found for other ponds. The RMSEs for other ponds were less than 0.13 ft except water units 24 and 30 for which RMSEs were 0.49 and 0.40 ft, respectively. In other words, the current specification for pond zoning and rule curves simulated the operation of ponds well.

Table 10 summarizes water-budget components of the ponds for the entire simulation period. For each pond, the water-balance equation was:

Initial water storage + upstream inflow +
surface runoff - water-surface evaporation ground-water seepage - total downstream release =
final storage, (57)

where upstream inflow was the total inflow to a pond from upstream canals; surface runoff was the total runoff calculated using the measured precipitation data and SCS curve numbers; water-surface evaporation was the total surface-water evaporation loss, which was estimated in terms of the water-surface area and potential evapotranspiration coefficients; groundwater seepage was the total water loss to an aquifer (positive values) or total water gain from an aquifer (negative values); downstream release was the total amount of water released to downstream canals from a pond; and final storage was the water stored in a pond at the end of the simulation period. It was shown that equation 57 was satisfied for all ponds.

Another way to examine the water budget is by viewing a whole flow system as a "system node," which combines canals and control ponds with inflow from the Zenith node and outflows from nodes Raymond, water unit 11, and DCC (see figure 4). The over-

all water budget for the entire canal and control-pond system is summarized in table 11 for the entire simulation period. In table 11, initial storage was the summation of pond storage at the beginning of the simulation (13,102.68 acre-ft), which was interpreted from the measured water levels on June 10, 1996. Total stream inflow was the inflow from Rattlesnake Creek to water unit 5 (17,782.21 acre-ft), which was measured at the USGS streamflow-gaging station near Zenith. Local water gain to the system included surface runoff due to precipitation (6,559.04 acre-ft, 6,499.77 acre-ft of which were to ponds) and ground-water seepage to ponds (3,035.56 acre-ft) and was equal to 9,594.60 acre-ft. The outflow was the summation of outflows released from node Raymond (17,421.22 acre-ft) and from node water unit 11 (400.85 acre-ft). Total stream inflow to the system was almost the same as the stream outflow from the system. Although the total inflow to the system (stream inflow, runoff, and ground-water seepage to ponds) was much larger than the stream outflow from the system, the final water storage in the system was significantly reduced from the initial storage of 13,102.68 acre-ft to 9,211.88 acre-ft due to a large amount of local water loss through water-surface evaporation from ponds (10,683.74 acre-ft) and canal-flow transmission losses (2,761.79 acre-ft). The water loss due to water-surface evaporation was larger than the total local water gain within the refuge.

SIMULATION OF CANAL AND CONTROL-POND OPERATION FOR 1991 WATER YEAR

A simulation was conducted to determine the operation of the system of canals and control ponds under drought flow conditions as occurred during the 1991 water year (October 1, 1990, through September 30, 1991) with different rule curves. Discharge during the 1991 water year was used as simulated discharge because this water year was the driest in terms of total discharges in Rattlesnake Creek for water years 1973 through 1995 (Putnam and others, 1996). In the following sections, the data needed to conduct the simulation and the necessary assumptions about these data are discussed, and then the simulation results are presented.

Table 10. Water budgets simulated for selected control ponds at Quivira National Wildlife Refuge, June 11 through December 11, 1996

[All values are in acre-feet; --, not applicable]

Water-unit	initiai	Total + upstream + inflow	Totai surface	Water surface -		Totai - downstream = release	Finai
(fig. 2)	storage		runoff	evaporation	seepage		storage
5 7	1,988.26	17,782.22	1,117.84	1,795.73	286.00	16,844.87	1,961.72
	39.72 145.48	486.93 169.66	31.98 57.79	57.25 109.78	0 0	431.67 117.67	69.71 145.48
10A 10B	145.48	531.21	55.60	98.40	34.04	467.15	132.70
10C	19.54	459.95	9.25	20.34	0	449.93	18.47
11	388.37	448.42	54.08	101.65	0	400.85	388.37
14A	161.70	214.52	96.82	152.05	0	152.25	168.74
14B	93.40	197.43	150.80	120.57	-9.20	179.99	150.27
14C	15.51	102.95	6.88	12.81	18.09	91.24	3.20
16	62.67	114.02	29.02	51.88	0	92.57	61.26
20A	163.88	493.65	142.78	250.73	0	353.34	196.24
20B	163.88	433.68	141.17	249.69	7.36	285.45	196.23
21	34.34	531.79	31.32	48.36	0	494.16	54.93
22	2.30	489.96	13.63	22.24	0	460.62	23.03
23	15.41	458.46	10.26	17.77	0	448.68	17.68
24	132.55	12,741.83	63.05	93.63	103.47	12,666.91	73.42
25	18.00	676.23	55.85	72.37	40.89	494.09	142.73
26	91.48	862.43	63.69	93.92	7.25	829.71	86.72
28	6.11	635.03	44.60	69.63	0	497.53	118.58
29	.20	482.72	38.38	53.35	0	404.38	63.57
30	2.82	396.78	62.17	97.04	0	196.68	168.05
40	55.91	77.90	14.03	34.19	-36.27	83.58	66.34
48	3.94	316.42	73.47	72.85	0	245.36	75.62
49	51.63	567.52	64.72	102.76	11.87	437.18	132.06
57	212.22	1,193.02	156.57	257.91	0	1,102.51	201.39
58	146.39	1,388.52	83.47	135.49	-86.07	1,429.80	139.16
61	212.80	340.11	123.31	209.47	-50.68	380.83	136.60
62	48.58	59.57	17.64	33.97	-31.89	57.62	66.09
63	268.98	132.23	129.33	232.08	-76.44	243.73	131.17
75	2,445.85	1,177.96	1,445.34	2,043.86	-2,484.88	4,004.79	1,505.38
78	5,270.43	5,359.15	1,728.99	3,161.14	-291.63	7,252.18	2,236.88
80	355.20	7,542.65	155.93	363.20	-85.77	7,705.34	71.01
81	25.31	7,252.18	41.67	94.73	-323.22	7,542.65	5.00
83	314.34	0	188.34	352.91	-68.48	14.14	204.11
Total	13,102.68	4-	6,499.77	10,683.75	-3,035.56		9,211.91

Table 11. Water budget simulated for entire canal and control-pond system at Quivira National Wildlife Refuge, June 11 through December 11, 1996

[All values are in acre-feet; --, not applicable]

Water-budget component	Storage	Inflow	Outflow
Initial storage	13,102.68		
Stream inflow		17,782.21	
Surface runoff		6,559.04	
Water-surface evaporation			10,683.74
Net ground-water seepage		3,035.56	
Canal-flow transmission loss			2,761.79
Outflow from Raymond node			17,822.07
Final storage	9,211.88		

Data Preparation

In this section, data needed for the simulation are discussed. Measurement data were used if available. If some data were not available, reasonable values were interpreted on the basis of other related data.

Precipitation

One of the major factors affecting the generation of direct overland surface runoff to ponds is the amount of precipitation. Figure 13A shows the daily precipitation measured at the Sandyland Experiment Station and at the USGS streamflow-gaging station near Zenith (fig. 1). Precipitation data from October 1, 1990, through May 20, 1991, were measured at the Sandyland Experiment Station. Precipitation data from May 21 through September 30, 1991, were measured at the USGS streamflow-gaging station near Zenith. The total amount of precipitation during the 1991 water year was 13.43 in.

Water-Surface Evaporation

The daily potential evapotranspiration (PET) estimated with the Penman method using the climatic data collected at the Sandyland Experiment Station (Marios Sophocleous, Kansas Geological Survey, written commun., 1996) is shown in figure 13B. The total amount of PET was 61.23 in. for the 1991 water year. For the

1991 water year simulation, it was assumed that the daily water-surface evaporation rate for ponds on the refuge was equal to the corresponding daily potential evapotranspiration at the Sandyland Experimental Station.

Canal Discharge

Discharges for Rattlesnake Creek measured at the USGS streamflow-gaging stations near Zenith and Raymond (fig. 1) from October 1, 1990, through September 30, 1991, are shown in figure 13C (Geiger and others, 1992). The mean daily discharges for the Zenith and Raymond stations during the 1991 water year were 6.59 and 2.77 ft³/s, respectively, which are much smaller than the long-term means of 50.6 ft³/s (1973–95 water years) and 48.8 ft³/s (1960–95 water years), respectively. As shown in the figure 13C, there was almost no flow during late September 1991.

For this simulation, the daily mean discharge observed at the USGS streamflow-gaging station near Zenith station was used as daily inflows to Little Salt Marsh from Rattlesnake Creek. The daily mean discharge observed at the USGS streamflow-gaging station near Raymond was used as the streamflow requirement for Rattlesnake Creek near Raymond.

Canal-Flow Transmission Losses

Canal-flow transmission loss was difficult to estimate. Because there were no data available to estimate the canal-flow transmission loss coefficient for the canals on the refuge during the simulation period, the estimated transmission loss coefficient (k in equation 42) of 9.16×10^{-6} ft⁻¹ for the 1996 simulation period was used for this simulation. Similar to 1996, canal-flow transmission losses occurred only in canals south of the RC Canal.

Ground-Water Discharge to Ponds

No monthly data for ground-water discharge to ponds were available for the simulation period. The study conducted using MODFLOW by Marios Sophocleous (Kansas Geological Survey, written commun., 1996) shows that the amount of annual ground-water discharge to ponds on the refuge was almost the same from 1975 through 1990. Consequently, the monthly ground-water-discharge data obtained from Marios Sophocleous (Kansas Geological Survey, written commun., 1997) for 1994 were used (see table 2).

Figure 13. (A) Daily precipitation, (B) daily potential evapotranspiration, and (C) daily mean discharge for Rattlesnake Creek, 1991 water year. Part of the precipitation data and potential evapotranspiration data are from the Kansas Geological Survey (Marios Sophocleous, written commun., 1996), and the discharge data are from Geiger and others (1992).

Initial Water Storage in Ponds

The amount of initial water storage in the control ponds affects the operation of the ponds and the final water budgets. The amount of water stored in the control ponds on September 30, 1990, was not known. The 1991 water year simulation was used to evaluate the daily operation of ponds with different rule curves during drought conditions. Therefore, the initial water storage in a pond was simply set at 80 percent of full-pond capacity for the 1991 simulation (see table 12) to be consistent with the study by Marios Sophocleous (Kansas Geological Survey, written commun., 1996).

Pond Zoning and Operating Policy

Each control pond was divided into four storage zones-inactive zone, lower zone, upper zone, and extended upper zone as shown in figure 5. Normal operating storage of a pond consisted of water stored between the lower zone and upper zone and was set between 20 and 100 percent of full-pond storage capacity for this simulation. In the other words, the lower boundary of the lower storage zone was set at 20 percent of full-pond capacity, and the top boundary of the upper storage zone was set at 100 percent of full-pond capacity. The rule curve was set within this operating storage range. Four different rule curves corresponding to different simulations were set at 60, 70, 80, and 90 percent of full-pond capacity, respectively. The capacity of the inactive zone of a pond was set at 20 percent of full-pond storage capacity (selected in consultation with the U.S. Fish and Wildlife Service). The top boundary of the extended upper zone was set 0.5 ft higher than corresponding full-pond capacity. Pond zoning expressed as pond storage along with the rule curve at 90 percent of full-pond capacity are summarized in table 12.

The priority of pond operation for the 1991 water year was the same as for 1996 (see the discussion of pond priority for the 1996 simulation). Typical values for penalty coefficients used in the 1991 water year simulation are also summarized in table 12. The canal-flow zoning and the assignment of penalty coefficients were the same as those used in the simulation for 1996 (see table 9).

Results

Four different simulations of canal and control-pond operation at the refuge were conducted with the rule curve of a pond set at 60, 70, 80, and 90 percent of full-pond capacity, respectively. Other specifications for pond zoning and canal outflows from the refuge were (1) the initial storage of a pond was set at the 80 percent of full-pond capacity; (2) the inactive storage of a pond was set at the 20 percent of full-pond capacity; and (3) outflows of Rattlesnake Creek near the USGS streamflow-gaging station near Raymond were fixed and equal to the discharges observed for the 1991 water year.

Results of operating the canals and control ponds using a rule curve of 90 percent of full-pond capacity are described first. The simulated water budget for water unit 5 is shown in figure 14. Figure 14A shows the inflows from the upstream Zenith node to water unit 5 (also see figure 4), which are equal to the discharges observed at the USGS streamflow-gaging station near Zenith. The total releases to all downstream nodes (water units 7 and 10A, and canal joints C-2 and JE-1) from unit 5 are shown in figure 14C. The simulated pond water stage corresponding to water storage (fig. 14D) is shown in figure 14E. Similar figures could also be generated for the remaining control ponds. These figures reflect the operation of a single pond during an entire simulation period with the current operating policy. These figures also can be used to evaluate whether some specifications, such as the target water level, in the operating policy are satisfied. Water storage after mid-June 1991 decreased and reached the inactive zone (fig. 14D) and could not be maintained at the target level due to insufficient inflow and water-surface evaporation. In other words, if the target level in water unit 5 was set too low, water unit 5 could be dry at the end of the period under inflow conditions that were simulated.

To show the water budget of a control pond during the simulation period, table 13 summarizes water-budget components of ponds with the rule curve at 90 percent of full-pond capacity. It is seen from table 13 that the final storage value for all ponds at the end of the simulation period was much smaller than the initial storage values. Many small ponds were dry at the end of the simulation period. Total water-surface evaporation for all ponds was much larger than other water-budget components (runoff, ground-water seepage).

Table 12. Initial storage, rule curve, zoning, and penalty coefficients assigned to control ponds at Quivira National Wildlife Refuge, 1991 water year

[acre-ft, acre-feet]

Water- unit number (fig. 2)	Initial storage at 80 percent of full- pond capacity (acre-ft)	Rule curve at 90 percent of full- pond capacity (acre-ft)	Upper boundary of extended upper zone (acre-ft)	Penalty coeffi- cient for extended upper zone	Upper boundary of upper zone (acre-ft)	Penalty coeffi- cient for upper zone	Lower boundary of lower zone (acre-ft)	Penalty coeffi- cient for lower zone	Lower boundary of inactive zone (acre-ft)	Penalty coeffi- cient for inactive zone
5	1,492.80	1,679.40	2,312.18	3,000	1,866.00	2,000	373.20	3,000	0	6,000
7	32.00	36.00	54.49	3,000	40.00	1,500	8.00	1,500	0	3,000
10A	116.00	130.50	180.30	3,000	145.00	1,500	29.00	1,500	0	3,000
1 0B	116.00	130.50	180.30	3,000	145.00	1,500	29.00	1,500	0	3,000
10C	10.40	11.70	14.61	3,000	13.00	1,500	2.60	1,500	0	3,000
11	270.40	304.20	413.90	3,000	338.00	1,500	67.60	1,500	0	3,000
14A	156.80	176.40	242.20	3,000	196.00	1,500	39.20	1,500	0	3,000
14B	76.80	86.40	144.01	3,000	96.00	1,500	19.20	1,500	0	3,000
14C	12.80	14.40	19.07	3,000	16.00	1,500	3.20	1,500	0	3,000
16	64.00	72.00	96.07	3,000	80.00	1,500	16.00	1,500	0	3,000
20A	156.00	175.50	268.01	3,000	195.00	1,500	39.00	1,500	0	3,000
20B	156.00	175.50	268.01	3,000	195.00	1,500	39.00	1,500	0	3,000
21	64.80	72.90	96.62	3,000	81.00	1,500	1 6.20	1,500	0	3,000
22	10.40	11.70	18.81	3,000	13.00	1,500	2.60	1,500	0	3,000
23	12.00	13.50	19.66	3,000	15.00	1,500	3.00	1,500	0	3,000
24	28.00	31.50	53.04	3,000	35.00	1,500	7.00	1,500	0	3,000
25	236.80	266.40	344.05	3,000	296.00	1,500	59.20	1,500	0	3,000
26	88.80	99.90	142.39	3,000	111.00	1,500	22.20	1,500	0	3,000
28	122.40	137.70	198.82	3,000	153.00	1,500	30.60	1,500	0	3,000
29	72.80	81.90	124.51	3,000	91.00	1,500	18.20	1,500	0	3,000
30	95.20	107.10	161.64	3,000	119.00	1,500	23.80	1,500	0	3,000
40	52.80	59.40	83.19	3,000	66.00	1,500	13.20	1,500	0	3,000
48	90.40	101.70	161.19	3,000	113.00	1,500	22.60	1,500	0	3,000
49	127.20	143.10	209.05	3,000	159.00	1,500	31.80	1,500	0	3,000
57	169.60	190.80	280.74	3,000	212.00	1,500	42.40	1,500	0	3,000
58	200.80	225.90	302.82	3,000	251.00	1,500	50.20	1,500	0	3,000
61	398.40	448.20	613.17	3,000	498.00	1,500	99.60	1,500	0	3,000
62	96.00	108.00	145.00	3,000	120.00	1,500	24.00	1,500	0	3,000
63	271.20	305.10	419.01	3,000	339.00	1,500	67.80	1,500	0	3,000
75	1,956.80	2,201.40	3,490.32	3,000	2,446.00	1,500	489.20	1,500	0	3,000
78	4,216.00	4,743.00	6,091.37	2,000	5,270.00	1,000	1,054.00	1,000	0	3,000
80	284.00	319.50	474.34	2,000	355.00	1,000	71.00	1,000	0	3,000
81	20.00	22.50	60.68	2,000	25.00	1,000	5.00	1,000	0	3,000
83	251.20	282.60	419.31	3,000	314.00	1,500	62.80	1,500	0	3,000

Figure 14. Water budget simulated for water unit 5, 1991 water year.

Table 13. Water budgets simulated for control ponds at Quivira National Wildlife Refuge with rule curve at 90 percent of full-pond capacity, 1991 water year

[All values are in acre-feet; --, not applicable]

Water-unit number (fig. 2)	Initial storage at 80 percent of fuil-pond + capacity	Total upstream inflow	+ Total surface .	Water- surface - evaporation	Ground- water seepage ¹	Total - downstream release	= Final storage
5	1,492.80	4,772.63	900.16	3,970.32	545.66	2,312.24	337.37
7	32.00	27.62	17.03	60.87	0	15.78	0
1 0 A	116.00	81.59	48.37	196.59	0	41.33	8.04
10B	116.00	56.16	31.97	132.51	64.84	6.78	0
10C	10.40	6.68	5.53	22.61	0	0	0
11	270.40	0	41.11	175.91	0	0	135.60
14A	156.80	117.93	67.12	252.34	0	80.85	8.66
14B	76.80	64.16	44.27	171.41	-18.25	27.51	4.56
14C	12.80	56.63	5.13	17.70	24.97	31.89	0
16	64.00	48.64	19.21	72.22	0	54.60	5.03
20A	156.00	100.37	78.10	303.93	0	29.97	.57
20B	156.00	196.85	96.66	380.01	13.88	55.62	0
21	64.80	51.83	22.11	85.13	0	50.50	3.11
22	10.40	50.07	6.45	23.09	0	43.83	0
23	12.00	43.62	6.40	23.31	0	38.71	0
24	28.00	1,541.96	17.28	62.83	149.33	1,375.08	0
25	236.80	94.39	73.72	268.01	75.04	61.85	.01
26	88.80	99.09	30.52	121.74	13.50	83.17	0
28	122.40	61.71	44.38	172.26	0	53.03	3.20
29	72.80	51.45	31.35	123.71	0	30.83	1.06
30	95.20	30.25	42.70	167.16	0	.99	0
40	52.80	0	30.79	134.70	-86.83	8.19	27.53
48	90.40	35.50	43.20	167.99	0	.12	.99
49	127.20	45.13	52.38	205.68	19.03	0	0
57	169.60	343.12	114.11	485.65	0	102.75	38.43
58	200.80	362.88	92.46	394.82	-173.34	390.50	44.16
61	398.40	565.28	208.54	902.49	-109.08	283.94	94.87
62	96.00	0	40.37	173.96	-70.19	3.15	29.45
63	271.20	189.92	150.50	650.00	-161.39	59.07	63.94
75	1,956.80	254.24	1,478.91	6,103.74	-5,002.59	1,642.84	945.96
78	4,216.00	1,881.86	1,262.39	5,406.83	-587.57	1,486.99	1,054.00
80	284.00	2,028.75	147.51	646.47	-172.74	1,915.53	71.00
81	20.00	1,486.99	37.92	162.60	-651.44	2,028.75	5.00
83	251.20	0	133.69	522.11	-137.75	0	.53
Total	11,525.60		5,422.34	22,760.70	-6,264.92		2,883.07

¹The positive values of ground-water seepage indicate that ponds lost water to the aquifer. The negative values of ground-water seepage indicate that ponds gained water from the aquifer.

Table 14. Water budget simulated for entire canal and control-pond system at Quivira National Wildlife Refuge with rule curve at 90 percent of full-pond capacity, 1991 water year

[All values are in acre-feet; --, not applicable]

Water-budget component	Storage	inflow	Outflow
Initial storage	11,525.60		
Stream inflow		4,772.63	
Surface runoff		5,422.34	
Water-surface evaporation			22,760.70
Net ground-water seepage		6,264.92	
Canal-flow transmission loss			336.51
Outflow from Raymond node			2,005.24
Final storage	2,883.07		

To examine the water budget for the whole flow system at the refuge, table 14 summarizes the overall water budget for the entire canal and control-pond system with the rule curve set at 90 percent of full-pond capacity. It can be seen from this table that although there were total inflows of 16,459.89 acre-ft, of which 4.772.63 acre-ft were from Rattlesnake Creek at Zenith node, 5,422.34 acre-ft from direct surface runoff, and 6,264.92 acre-ft from the ground-water seepage to ponds, the final water storage in the system was substantially reduced from the initial storage of 11,525.60 acre-ft, which was set at 80 percent of full-pond capacity, to 2,883.07 acre-ft due to the outflows from the Raymond node, water-surface evaporation, and canal-flow transmission loss. Total water out of the system (outflow, evaporation, and canal-flow transmission loss) from the system was 25,102.45 acre-ft, of which 22,760.70 acre-ft (or 91 percent of water outflow from the system) was due to water-surface evaporation. At the end of simulation period, 30 out of 34 ponds, including water unit 5, had water stored only in the inactive zone or were dry due to the large amount of water-surface evaporation.

To compare the operation of canal and control ponds with the rule curve at 90 percent of full-pond capacity, simulations were also conducted with the rule curves at 80, 70, and 60 percent of full-pond capacity. All of simulations were conducted with the same model specification except for the rule curves.

Figure 15 shows the change in water storage for water units 5 and 78, respectively, with different rule curves. As the rule curve was reduced from 90 to 60 percent of full-pond capacity, water storage in water unit 5 during the simulation period decreased, and the final pond storage was also reduced from 337 to 48 acre-ft (fig. 15A). Because water unit 5 had the highest priority and because the initial storage was higher than the rule curve, water was released immediately downstream as shown in figure 15A. On the other hand, water storage in water unit 78 increased during the simulation period (fig. 15B). Because water unit 78 had the lowest priority and because water storage in the upstream higher priority ponds was in the upper zone, water was released from these higher priority ponds to maintain their rule curves, and water released from the upstream pond was stored in the unit 78, which caused the water storage to reach full-pond capacity (fig. 15B). After mid-June 1991, there were not enough inflow (upstream inflow plus surface runoff) to water unit 5 to maintain water levels at the rule curve, and water levels decreased due to water-surface evaporation. At the end of simulation, the water level in water unit 5 was located in the inactive zone (figs. 14 and 15A). Similar changes in water storages were also observed for other control ponds.

The simulated water budget for the entire canal and control-pond system for the 1991 water year with different rule curves is summarized in table 15. As the rule curves were reduced from 90 to 60 percent of full-pond capacity, surface runoff, water-surface evaporation, and ground-water seepage from ponds were reduced, and stream outflow and final storage increased (see table 15). The reduction of the rule curve of a pond generally caused a lower pond water level to be maintained for the higher priority ponds. In other words, the total water-surface evaporation and rainfall onto the water-surface area of a pond were reduced for the same evaporation rate and precipitation depth. When initial pond storage was higher than the rule curve (initial storage was set at 80 percent of full-pond capacity), water was released from the ponds with higher priority to meet the rule-curve water level, which caused more canal-flow transmission losses along the canals in the south part of the refuge and increased outflows from water unit 11. The final pond water storage also increased due to storage increases in water unit 78 (fig. 15B) and other ponds in the north part of the refuge.

Figure 15. Simulated pond water storage with different rule curves for (A) water unit 5 and (B) water unit 78, with initial storage at 80 percent of full-pond capacity, 1991 water year.

Table 15. Water budgets simulated for entire canal and control-pond system at Quivira National Wildlife Refuge using different rule curves, 1991 water year

[all values are in acre-feet]

Water-budget component	Rule curve set at 90 percent of full-pond capacity	Rule curve set at 80 percent of full-pond capacity	Rule curve set at 70 percent of full-pond capacity	Rule curve set at 60 percent of full-pond capacity
Initial pond storage	11,525.60	11,525.60	11,525.60	11,525.60
Inflow:				
Stream inflow from Rat- tlesnake Creek	4,772.63	4,772.63	4,772.63	4,772.63
Surface runoff	5,422.34	5,393.31	5,260.83	4,981.23
Net ground-water seep- age, including canal- flow transmission loss	-5,928.41	-5,900.37	-5,854.23	-5,854.04
Outflow:				
Water-surface evaporation	22,760.70	22,694.41	22,238.25	21,299.74
Total outflow	2,005.24	2,005.28	2,073.30	2,547.26
Final pond storage	2,883.07	2,892.22	3,101.74	3,286.50

Simulation results for the 1991 water year indicate that water-surface evaporation was the major factor in lowering water storage in ponds. Storing more water in the ponds in the north part of the refuge by reducing the rule curve for higher priority ponds may reduce the overall water-surface evaporation. However, this will also cause water unit 5 to dry out quickly if there is not enough upstream inflow as was the case during the 1991 water year. Maintaining high water levels in water unit 5 depends upon the rule curve in water unit 5 being set at a high level. The simulation results discussed for the 1991 water year were obtained based on a number of assumptions, such as the initial storage in ponds. If the specifications for the simulation model change, the results may be much different.

SUMMARY

In 1995, a 3-year study was undertaken to develop a water budget and flow-routing model to assist the U.S. Fish and Wildlife Service in determining the outcome of possible water-management options at the Quivira National Wildlife Refuge, south-central Kansas. The study was done by the U.S. Geological Survey in cooperation with the Kansas Geological Survey. A computer program OPONDS, written in FORTRAN,

was developed using network flow analysis to determine the optimal operation of a system of canals and control ponds. Applications of the model are presented that investigate the daily operation of canals and control ponds on the refuge using historical discharge and pond water levels.

The daily operation of a system of canals and control ponds at the refuge in the Rattlesnake Creek Basin was simulated for June 11 through December 11, 1996, using a linear-network flow model. In this simulation, some management requirements included the measured water levels of control ponds as the target management pond levels and the observed stream discharges in Rattlesnake Creek near Raymond as the outflow requirement from the refuge. Measured precipitation and calculated potential evapotranspiration were used to compute the surface runoff to ponds and water-surface evaporation, respectively. The operating policy was determined by using selected storage zones within a pond and prioritization of the ponds by using the relative magnitude of penalty coefficients within the computer model to adjust pond storages and canal flows. Results of the 1996 simulation indicate that the current specification for pond zoning and rule curves, with water unit 5 given the highest priority and ponds in the north part of the refuge given the lowest priorities, simulated pond levels that matched well with observed ones. Root mean square errors between simulated and measured water levels were less than 0.13 ft except for water units 24 and 30. Water storage in ponds during the simulation period was substantially reduced due to water-surface evaporation and canal-flow transmission losses.

Simulation of canal and control-pond operation under drought conditions during the 1991 water year was also conducted with different target pond water levels. This simulation used 1991 measured stream discharges, precipitation, and potential evapotranspiration data and 1994 ground-water seepage to ponds to investigate the operation of the canals and control ponds. The operating policy used four pond storage zones and the prioritization of ponds, with water unit 5 having the highest priority and ponds in the north part of the refuge having the lowest priority. Results showed that under the same initial water storage of 80 percent of full-pond capacity lowering target pond water levels reduced water-surface evaporation, resulted in more water stored in ponds in the north part of the refuge, and caused a substantial decrease in the final water storage in water unit 5. In other words, to maintain high water storage in water unit 5, the target water level in this unit should be high. To reduce the total water-surface evaporation loss, the target water level should be low for unit 5 so that water is stored in the ponds in the north part of the refuge. It should be noted that results of the 1991 water year simulation were obtained with the same initial storage of ponds and measured discharges of Rattlesnake Creek near Raymond as the 1996 simulation. The optimal operation of a system of canals and control ponds depends on having a well-defined operating policy and accurate data and may require several combinations of model specifications to obtain optimum results.

The OPONDS model can be applied to other operations at the Quivira Refuge simply by modifying the conceptual flow-network configuration and changing the operating policy through pond-storage and canal-flow zoning and corresponding penalty coefficients. The OPONDS model can be applied to operational matters such as the determination of target water levels and pond water releases, the operation of the outlet structures, and canal flow and routing.

The OPONDS model is a simplification of a complex canal-pond network flow system and is limited in simulating the operation of the flow system by the accuracy of data used in the model and some assump-

tions. Nonetheless, the OPONDS model is a useful tool for estimating the effects of possible water-management options for the Quivira National Wildlife Refuge.

REFERENCES

- Bazaraa, M.S., Jarvis, J.J., and Sherali, H.D., 1990, Linear programming and network flows (2nd ed.): New York, John Wiley & Sons, 684 p.
- Chengdu Science and Technology University, 1979, Hydraulics: Chengdu, China, Chengdu Science and Technology University, 512 p.
- Chow, V.T., Maidment, D.R., and Mays, L.W., 1988, Applied hydrology: New York, McGraw-Hill, Inc., 572 p.
- Fulkerson, D.R., 1961, An out-of-kilter method for minimal cost flow problem: Journal of the Society for Industrial and Applied Mathematics, v. 9, p.18–27.
- Geiger, C.O, Lacock, D.L., Schneider, D.R., Carlson, M.D., and Pabst, B.J., 1992, Water resources data, Kansas, water year 1991: U.S. Geological Survey Water-Data Report KS-91-1, 358 p.
- Henderson, F.M., 1966, Open channel flow: New York, Mac-Millan Publ. Co., Inc., 522 p.
- Hulsing, Harry, 1967, Measurement of peak discharge at dams by indirect method: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. A5, 29 p.
- Jian, Xiaodong, 1988, Simulation and optimization of the operation of the Kansas River Basin reservoirs: Lawrence, University of Kansas, unpublished master's thesis, 121 p.
- Jordan, P.R., 1977, Streamflow transmission losses in western Kansas: American Society of Civil Engineers, Journal of the Hydraulic Division, v. 103, no. HY8, p. 905–919.
- McCuen, R.H., 1989, Hydrologic analysis and design: Englewood Cliffs, New Jersey, Prentice-Hall, 867 p.
- Putnam, J.E., Lacock, D.L., Schneider, D.R., Carlson, M.D., and Dague, B.J., 1996, Water resources data, Kansas, water year 1995: U.S. Geological Survey Water-Data Report KS-95-1, 488 p.
- Soil Conservation Service, 1985, SCS national engineering handbook, section 4, hydrology: U.S. Department of Agriculture, various pages.
- Sophocleous, Marios, and Perkins, S.P., 1992, Stream-aquifer and mineral intrusion modeling of the lower Rattle-snake Creek basin with emphasis on the Quivira National Wildlife Refuge: Kansas Geological Survey Open-File Report 92–6, 205 p.
- Swamee, P.K., 1992, Sluice-gate discharge equations: Journal of Irrigation and Drainage Engineering, v. 118, no. 1, p. 56–60.

- U.S. Army Engineer Waterways Experiment Station, 1972, Overflow spillways, site-discharge relation for uncontrolled flow: Vicksburg, Miss., Hydraulic Design Chart 113–3/3.
- Wu, J.S., King, E.L., and Wang, Michael, 1985, Optimal identification of Muskingum routing coefficients: Water Resources Bulletin, v. 21, no. 3, p. 417–421.
- Yu, Yun-Sheng, Jian, Xiaodong, Pogge, E.C., and Heidari, Manoutchehr, 1989, Management of the Kansas River Basin—a systems approach phase II: Lawrence, Kansas, Water Resources Research Institute Contribution No. 276, 119 p.

APPENDIX A. GENERAL DESCRIPTION OF OPONDS COMPUTER PROGRAM

The computer program OPONDS (The optimal Operation of a system of PONDS) is written in FORTRAN 77. The main purpose of the program is to simulate the operation of a system of canals and ponds using various management requirements. Some examples of management requirements are target water levels (rule curves) of ponds, target releases from ponds, minimum required canal flow, maximum allowed canal flow, target water withdrawals, prioritization of ponds, and so forth. The program combines the concepts of pond zoning and rule curves together with the prioritization of ponds to determine operation of a system of canals and ponds using a linear programming technique. The resulting model is very flexible and can be easily adapted to any configuration of a canal-pond system. The introduction of penalty coefficients to the model allows model users to switch easily from one policy of operation to another by simply altering values of the penalty coefficients assigned to prioritize the various ponds.

The modeling approach converts the canal-pond operation into a minimum-cost network flow problem. Some management requirements become constraints in the network flow problem. After the minimum-cost flows are determined, these flows are transferred back to their corresponding pond-storage or canal-flow values.

The overall OPONDS program structure is shown in figure 16. In terms of functions, the whole program can be divided into three parts: (1) build and modify a flow network, (2) determine the flow in the network, and (3) output water budgets in nodes and arcs.

The first part of the program builds a basic flow network. The arcs in this network do not change throughout the simulation period and include pond-storage arcs and canal-flow arcs. For each time period, time-dependent contribution data, such as the net incremental inflow to nodes, precipitation, target water demand, water-surface evaporation, and ground-water seepage, are needed, and arcs representing these contribution data are generated and added into the basic network. If time-dependent management requirements such as seasonal flow boundary and pond rule curves are needed, the basic network can be expanded to represent these time-dependent data.

After the flow network is built, the flows in the network can be determined using a linear network flow algorithm called the out-of-kilter algorithm (Fulkerson, 1961). If no flows can be determined, the program execution terminates.

Once flows are determined for a network, water budgets for canals and ponds are computed. These water budgets are output for each time step. Time-series output of water budgets for selected canals and ponds are also provided.

The program source codes are listed in Appendix E of this report. The electronic form of the source codes may be obtained by contacting the U.S. Geological Survey in Lawrence, Kansas.

Figure 16. Overall structure of OPONDS computer program.

APPENDIX B. INPUT/OUTPUT INSTRUCTIONS FOR OPONDS COMPUTER PROGRAM

Because there are more than 20 input and output data files, all input- and output-data file names and associated file-identification codes are listed in the master data file. File-identification codes here are used to distinguish data files. Table 16 lists all available file-identification codes and descriptions of associated data files. The master data-file format is listed in table 17. Instruction file formats for different input data are summarized in tables 18 through 36. Most input data files consist of four parts of information—title area (five title lines), data unit code, nodal name list, and data matrix. Data are input with free format; that is, the data are delimited by spaces.

The number of input data files is dependent on the study need. The essential files to run the program are the master data file, the general network configuration and parameter file, and the network flow-configuration file if data in this file are not included in the general network configuration and parameter file. The other data files are added only if needed. For example, if a study involves the operation of pond(s), then files for relations of elevation-volume-area of ponds and pond-storage zoning are needed.

Most input data are related to a nodal name. Nodal names are limited to 12 characters and are not case sensitive. For example, POND_1 and pump_1 are valid nodal names. Commas and spaces are not allowed in a nodal name.

Table 16. List of file codes and descriptions for OPONDS computer program

[--, not applicable]

File		
code	File description	File format
	Input data files	
0	General network configuration and parameter file	See table 18
1	Pond zoning file	See table 19
2	Network flow-configuration file	See table 20
3	Canal geometry file	See table 21
4	Outlet hydraulic-structure file	See table 22
5	Surface-runoff parameter file	See table 23
9	Pond elevation-volume-area file	See tables 24 and 25
10	Seasonal target water-demand file	See table 26
11	Seasonal water-surface evaporation file	See table 27
12	Seasonal flow-boundary file	See table 28
13	Seasonal rule-curve file	See table 29
16	Local net incremental inflow file	See table 30
17	Precipitation file	See table 31
18	Time-dependent, evaporation file	See table 32
19	Time-dependent, target water-demand file	See table 33
20	Time-dependent, rule-curve elevation file	See table 34
21	Time-dependent, flow-boundary file	See table 35
22	Ground-water-elevation file	See table 36
23	Fixed-flow file	See table 37
	Output files	
26	Network configuration output	
27	Nodal budget output	
28	Arc budget output	
29	Operation of hydraulic-structure output	
30	File for listing nodal names for nodal water-budget output	
	in time-series format	
31	File for listing canal upstream and downstream nodal	
	names for canal water-budget results in time-series	
	format	

Table 17. File format for master file in OPONDS computer program

[--, not applicable]

State- ment number	Informa- tion at state- ment	Vari- able	Definition	Vari- able type	State- ment number	Informa- tion at state- ment	Vari- able	Definition	Vari- able type
1–5	Title lines		Title and variable descriptions.		6	File code and file names	CD FILN M	File code (see table 16). File name.	integer character

The time-series output of water budgets for a node will use the nodal name as a part of the output file name. If the program is running on a personal computer (PC) and time-series output for a nodal water budget is needed, the corresponding nodal name is limited to five characters because a file name, not including the file extension, on PC MS-DOS systems is limited to eight characters.

Seasonal data here mean that values change seasonally (monthly, weekly, even daily) within a year and do not change over years. Some examples of seasonal data are target water demands, pond rule curves (target water level), and evaporation coefficients. These data can be input either as seasonal data or nonseasonal data depending on the length of the simulation period. If the whole simulation period is multiple years, the seasonal data can be specified in the seasonal data file. However, if the simulation period is less than 1 year, seasonal data can be input as nonseasonal data because this may result in smaller input files.

General Network-Configuration and Parameter File

The general network-configuration and parameter file is used for specifying the basic simulation information, such as length of the simulation period, the number of seasons of a year, and accuracy of output results (see items 1 through 7 in table 18). In addition to the simulation information, data for constructing a basic network, such as pond zoning, canal zoning, canal-flow directions, canal hydrologic and geometry data, and seasonal input data, also can be included in this file. The part numbers are designed to input these data (see instructions in table 18). Note that these data may be specified in separate files (see tables 19 through 23 and 26 through 29).

Table 18. File format for general network configuration and parameters (file-identification code 0 used in OPONDS computer program)

[<, less than; SCS, Soil Conservation Service; ft³/s, cubic feet per second; ft, feet; ft³/d, cubic feet per day; ft/d, feet per day; acre-ft, acre-feet; in/d, inch per day; in., inch; mm/d, millimeter per day; mm, millimeter; --, not applicable; >, greater than; <, less than]

Statement number	Information at statement	Variable name	Definition	Variable type	Default value	Unit
1–2	Title lines	SYSNAM	Canal-pond system name.	character	· · · · · · · · · · · · · · · · · · ·	
3	Time step and seasons	PERD NPER	Number of days in a time period. Number of periods in a year.	real integer		day
4	Starting season	STMO YR	Starting season. Starting year.	integer integer		
5	Length of simula- tion periods	NSPS	Number of simulation periods.			
6	Convergence	RTERM LDIRT	Flow convergence criterion. Maximum number of iterations.	real integer		ft ³ /s
7	Output budget accuracy	XP	Number of decimal points in acre-ft.	integer		

Table 18. File format for general network configuration and parameters (file-identification code 0 used in OPONDS computer program)—Continued

Statement number	Information at statement	Variable name	Definition	Variable type	Default value	Unit
8	Save options	SAVOPT	Save options for general output (0—all; 1—input data; 2—network configuration; 9—none).	integer	0	
9	Part 1: Pond zones and bottom information	PART N	Part. Part number.	character integer	PART 1	
10	List of variables			string		
11	Data	NAME UNITCD	Pond node name. Elevation or storage unit code (0—ft; 1—acre-ft).	character integer		
		INST BOT KY B RC Z(I) COST(I) I = 1,	Initial pond elevation or storage. Bottom elevation. Bottom-bed hydraulic conductivity. Bottom-bed thickness. Rule-curve elevation or storage. Zone elevation or storage. Penalty coefficients. NZONE is the number of operational storage zones of a pond.	real real real real real integer	 	 ft ft/d ft
10	7711.1.	NZONE)	T71 - 1	1	C 1 1	
12	Finish	FINISH	Finish.	character	finish	
13	Part 2:	PART	Part.	character	PART	
1.4	Flow network	N	Part number.	integer	2	
14	List of variables			string		
15	Data	F_NODE T_NODE	From-node name. To-node name.	character char		
		LBND UBND COST INST K X SP	Lower flow boundary. Upper flow boundary. Penalty coefficient for flow zone. Initial canal storage. Traveltime through routing canal. Weighting factor between 0 and 0.5. Canal-seepage coefficient (<1.0); if < 0, use Darcy's law. Evaporation coefficient.	real real real real real real real real	 	ft ³ /s ft ³ /s acre-ft day
16	Finish	FINISH	Finish.	character	finish	11/u
17	Part 3: Canal	PART	Part.	character	PART	
	geometry data	N	Part number.	integer	3	
18	List of variables			character		

Table 18. File format for general network configuration and parameters (file-identification code 0 used in OPONDS computer program)—Continued

Statement number	Information at statement	Variable name	Definition	Variable type	Default value	Unit
19	Data	F_NODE	From-node name.	character		
		T_NODE	To-node name.	character		
		N	Canal roughness coefficient.	real		
		L	Canal length.	real		ft
		J	Canal average slope.	real		
		W	Canal width.	real		ft
		M	Canal side slope.	real	0	
		D	Canal maximum depth.	real		ft
		KY	Canal riverbed hydraulic conductivity.	real		ft/d
		THICK	Riverbed thickness.	real		ft
		ELEV	Riverbed elevation at entry of canal.	real		ft
20	Finish	FINISH	Finish.	character	finish	
21	Part 4: Hydraulic	PART	Part.	character	PART	
	structure	N	Part number.	integer	4	
22	List of variables			string		
23	Information for	NAME	Structure name.	character		
	outlet hydraulic	F_NODE	From-node name.	character		
	structure—pipe	T_NODE	To-node name.	character		
		TYPE	Structure type code (1—sharp-crested weir; 2—gate on spillway; 3—gate on broad-crested weir).	integer		
		BELEV	Base elevation.	real		ft
		WLEN	Weir length.	real		ft
		WHITE	Weir height if sharp-crested and broad-crested weir, or the design water head if standard spillway.	real		ft
		GHITE	Gate opening height.	real		ft
		WB	Weir width (thickness).	real		ft
23	Information for	NAME	Structure name.	character		
	outlet hydraulic	F_NODE	From-node name.	character		
	structure—pipe	T_NODE	To-node name.	character		
		TYPE	Structure type code (= 6).	integer		
		BELEV	Base elevation.	real		ft
		WIDTH	Pipe diameter.	real		ft
		LENG	Pipe length.	real		ft
		FRIC	Pipe-friction factor.	real	0.025	
		ENLOS	Pipe-entrance loss factor.	real	0.5	
24	Finish			character		
25	Part 5: Surface-	PART	Part.	character	PART	
	runoff parameters	N	Part number.	integer	5	
26	List variable					

Table 18. File format for general network configuration and parameters (file-identification code 0 used in OPONDS computer program)—Continued

Statement number	Information at statement	Variable name	Definition	Variable type	Default value	Unit
27	Data	NAME	Nodal name.	character		
		A5DR0	Initial total antecedent 5-day rainfall.	real		in.
		A5DRI	Antecedent 5-day rainfall for dry conditions.	real		in.
		A5DRIII	Antecedent 5-day rainfall for wet conditions.	real		in.
		SCSCN	SCS curve number for average condition.	real		
		AREA	Drainage area.	real		acres
28	Finish					
29	Part 10:	PART	Part.	character	PART	
	Seasonal target water demands	N	Part number.	integer	10	
30	Unit	WSUNIT	Target water-demand unit code (0—acre-ft; 1 —ft ³ /s; 2—ft ³ /d).	integer	0	
31	List of variables	TIME	Time step.	character		
		(NAME (I), I = 1, NWSND)	Nodal names. NWSND is the number of nodes with seasonal target water demands.	character		
32	Target water	TIME	Season.	character		
	demands for each season N, N = 1, NPER	(WSTB (N,J), J = 1, NWSND)	Seasonal target water demands.	real		
33	Finish	FINISH	Finish.	character	finish	
34	Part 11:	PART	Part.	character	PART	
	Seasonal water- surface evapora- tion coefficient	N	Part number.	integer	11	
35	Unit	EVUNIT	Surface-water evaporation coefficient unit code (0—mm/d; 1—in/d; 2—ft/d).	integer		
36	List of variables	TIME	Time step.	character		
		(NAME (I), I = 1, NEV)	Nodal names. NEV is the number of nodes with surface-water evaporation coefficients.	character		
37	Water-surface	TIME	Season.	char		~-
	evaporation coefficients for each season N, N = 1, NPER	(EVTB (N,J), J=1, NEV)	Evaporation coefficients.	real	~-	
38	Finish	FINISH	Finish.	character	finish	
39	Part 12:	PART	Part.	character	PART	
	Seasonal flow boundaries	N	Part number.	integer	12	~~
40	Unit	FBUNIT	Flow unit code (0—acre-ft; 1—ft ³ /s; 2— ft ³ /d).	integer		

Table 18. File format for general network configuration and parameters (file-identification code 0 used in OPONDS computer program)—Continued

Statement Information at number statement		Variable name	Definition	Variable type	Default value	Unit
41	List of nodal names	(NAME (J), J = 1, NFBAR)	From-nodal names. NFBAR is the number of arcs.	character		
42	List of nodal names	(NAME (J), J = 1, NFBAR)	To-nodal names.	character		
43	Zone index	TIME, (FBIDX (J), J = 1, NFBAR)	Season. Flow-zone index (-1, lower boundary of normal flow zone; +1, upper boundary of normal flow zone, <-2, lower extended flow zone; >+2, upper extended flow zone; that is, $ndex = zone \pm$).	character integer		
44	Flow boundaries for each season N, N = 1, NPER	TIME, (FBTB (N,J), J = 1, NFBAR)	Season. Seasonal flow boundaries.	character real		
45	Finish	FINISH	Finish.	character	finish	
46	Part 13:	PART	Part.	character	PART	
	Seasonal rule curve	N	Part number.	integer	13	
47	Unit	RCUNIT	Rule-curve elevation unit code (0—ft; 1—in.; 2—mm).	integer		
48	List of variables	TIME (NAME (I), I = 1, NRCND)	Time step. Pond nodal names. NRCND is the number of pond nodes with seasonal rule curves.	character character		
49	Rule curves for each season N, N = 1, NPER	N (RCTB (N,J), J=1, NRCND)	Season. Rule-curve elevation.	character real		~~
50	Finish	FINISH	Finish.	character	finish	

Pond-Zoning File

The pond-zoning file is used to specify pond-storage zones and bottom hydraulic parameters. Initial storage, rule curve, pond zoning, and penalty coefficients are specified in this file. The bottom hydraulic and geometry data include hydraulic conductivity, average thickness of bottom layer, and bottom elevation. Input instructions and explanations of variables are listed in table 19. The file-identification code is 1. All data specified in this file can also be included in the general network-configuration and parameter file (table 18).

Table 19. File format for initial pond condition and zoning (file-identification code 1 used in OPONDS computer program)

[ft, feet; acre-ft, acre-feet; ft/d, feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable name	Definition	Variable type	Unit
1-5	Title lines		Specify data information about source, etc.		
6	Pond zoning and	NAME	Pond node name.	character	
	bottom hydrau-	UNITCD	Stage unit code (0—ft, 1—acre-ft).	integer	
	lic parameter	INST	Pond initial elevation or storage.	real	
	for each pond	BOT	Bottom elevation.	real	ft
		KY	Bottom layer hydraulic conductivity.	real	ft/d
		В	Bottom layer thickness.	real	ft
		RC	Rule-curve stage.	real	
		(Z(I)	Zone stage (see note 1).	real	
		COST(I)	Penalty coefficients (see note 1). NZONE is	integer	
		I = 1, NZONE)	the number of storage zones of a pond.		

Note

^{1.} If there is more than one zone, Z and COST must be specified for each zone. Zone boundaries (that is, elevations) or corresponding storage are specified at the beginning of the zones next to the rule curve.

Network Flow-Configuration File

The network flow-configuration file contains data for determining the directions of canal-flow arcs and canal-routing coefficients. Each record in the file represents an arc in a network. Because each flow zone in the canal is represented by an arc, there is one record for each extended flow zone. Canal-routing coefficients (initial canal storage, traveltime, weighting factor, and seepage coefficient) are optional. If canal routing is not needed, routing coefficients do not need to be specified or the values are set equal to zero. Input instructions and explanations of variables are listed in table 20. The file-identification code is 2. All data specified in this file also can be included in the general network-configuration and parameter file (table 18). Network-flow configuration data need to be specified in order to run the OPONDS program.

Table 20. File format for network flow configuration (file-identification code 2 used in OPONDS computer program)

[ft³/s, cubic feet per second; acre-ft, acre-feet; in/d, inches per day; --, not applicable; <, less than]

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Unit
1–5	Title lines				
6	Canal-flow zon-	F_Node	From-node name.	character	
	ing and routing	T_Node	To-node name (see note 1).	character	
	coefficients for	LBND	Lower flow boundary (see note 2).	real	ft ³ /s
	each flow zone	UBND	Upper flow boundary (see note 2).	real	ft ³ /s
		COST	Penalty coefficient of flow zone.	integer	11.78
		INST	Initial canal storage.	real	acre-ft
		K	Traveltime through routing canal.	real	day
		x	Weighting factor between 0 to 0.5.	real	uay
		SP	Canal-seepage coefficient (<1.0) (see note 3).	real	
		EV	Evaporation coefficient (see note 4).	real	in/d

Notes:

- 1. If there is not a physical downstream node (that is, the downstream node is SINK), use node name SKSC.
- 2. If there are more than one flow zone, the normal flow zone must be specified first.

One record is specified for each flow zone, including normal, lower, and upper zones.

- 3. If SP < 0, the seepage will be estimated using Darcy's law. The average depth of water is estimated using Manning's equation. The hydraulic and geometry parameters used in Manning's equation must be specified.
 - 4. Only the evaporation (EV) occurring in the normal flow range will be estimated.
- If EV > 0, this value will be used for entire simulation period.

If EV < 0, the evaporation coefficient will be interpreted in terms of coefficients in upstream and downstream nodes if available. To estimate the surface-water evaporation for canals, canal geometry parameters (length, width, and side slopes) must be specified in the geometry and riverbed hydraulic parameter file. If the canal geometry data are not specified, the canal water-surface evaporation will not be calculated.

Canal-Geometry and Riverbed Hydraulic Parameter File

The canal-geometry and riverbed hydraulic parameter file is used for specifying canal cross-section data, riverbed hydraulic parameters, canal lengths, and canal-entry bottom elevations. These data are used mainly in canal routing for determining canal seepage and surface-water evaporation. These data are optional. Input instructions and explanations of variables are listed in table 21. The file-identification code is 3. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 21. File format for canal geometry and riverbed hydraulic parameters (file-identification code 3 used in OPONDS computer program)

[ft, feet; ft/d, feet per day; --, not applicable]

State- ment num- ber	information at statement	Variabie	Definition	Variabie type	Unit
1–5	Title lines				
6	Canal geometry	F_NODE	From-node name.	character	
	data	T_NODE	To-node name.	character	
		N	Canal roughness coefficient.	real	
		L	Canal length.	real	ft
		J	Canal average slope.	real	
		W	Canal bottom width.	real	ft
		M	Canal side slope.	real	
		D	Canal maximum depth.	real	ft
		KY	Canal riverbed hydraulic conductivity.	real	ft/d
		THICK	Riverbed thickness.	real	ft
		ELEV	Riverbed elevation at entry.	real	ft

Outlet Hydraulic-Structure Parameter File

Outlet hydraulic structures included in the OPONDS program are rectangular sharp-crested weirs, vertical sluice gates on broad-crested weirs, vertical flat gates on spillways, and pipes. Flow through gated weirs and sharp-crested weirs is assumed to be controllable by adjusting gate opening heights or sharp-crested weir heights. The data needed and input instructions and explanations of variables are listed in table 22. The file-identification code is 4. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 22. File format for outlet hydraulic-structure parameters (file-identification code 4 used in OPONDS computer program)

[ft, feet; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Default value	Uni
1–5	Title lines		~			
6	Information for	NAME	Structure name,	character		
	each weir	F_NODE	Nodal name (see note 4).	character		
		T_NODE	Downstream nodal name (see note 4).	character		
		TYPE	Structure type code (see note 1).	integer		
		BELEV	Base elevation (see note 2).	real		ft
		WLEN	Weir length.	real		ft
		WHITE	Weir height if sharp-crested and broad-crested weir, or the design water head if standard spillway.	real		ft
		GHITE	Gate opening height.	real		ft
		WB	Weir width (thickness).	real		ft
	Information for	NAME	Structure name.	character		
	each outlet	F_NODE	Nodal name (see note 4).	character		
	pipe	T_NODE	Downstream nodal name (see note 4).	character		
		TYPE	Structure type code (see note 1).	integer		
		BELEV	Base elevation (see note 2).	real		ft
		WIDTH	Pipe diameter.	real		ft
		LENG	Pipe length (see note 3).	real		ft
		FRIC	Pipe-friction factor.	real	0.025	
		ENLOS	Pipe-entrance loss factor.	real	0.5	

Notes:

- 1. Hydraulic-structure type code:
 - 1—Rectangular sharp-crested weir (0 < H/P < 5).
 - 2-Vertical flat gate on spillway. Gate edge is facing downstream.
 - 3-Vertical sluice gate on broad-crested weir.
 - 6—Pipe
- 2. Base elevation: (1) bottom of a weir if sharp-crested weir, (2) top of a weir if spillway or broad-crested weir, and (3) center of a pipe at entry if pipe.
 - 3. If sharp-crested weir height is less than zero (< 0), the weir height is adjustable, and the absolute value is the maximum height allowed.
 - 4. There is only one flow zone downstream from the structure. No extended flow zones are allowed.

Surface-Runoff Parameter File

Surface runoff is calculated using the SCS curve-number method (Soil Conservation Service, 1985). Data needed are drainage area, curve number for average condition, initial antecedent 5-day rainfall, and criteria for wet/dry conditions. Input instructions and explanations of variables are listed in table 23. The file-identification code is 5. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 23. File format for surface-runoff parameters (file-identification code 5 used in OPONDS computer program)

[in., inches; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Default value	Unit
1–5	Title lines					
6	Data	NAME	Nodal name.	character		
	Dutu	A5DR0	Initial antecedent 5-day rainfall.	real		in.
		A5DRI	Antecedent 5-day rainfall for dry conditions (I) (see note 1).	real	0.5	in.
		A5DRIII	Antecedent 5-day rainfall for wet conditions (III) (see note 2).	real	1.1	in.
		SCSCN	SCS curve number for average conditions (II).	real		
		AREA	Drainage area.	real		acres

Notes:

Pond Elevation-Volume-Area Relation File

If there is any pond operation involved, the pond elevation-volume-area relation file is used. The relations among water-surface elevation, volume, and water-surface area of ponds can be expressed either in tabular form or in the regression equations for the Quivira National Wildlife Refuge (tables 24 and 25). The file-identification code is 9.

Table 24. File format for relations among water-surface elevation (*Z*), volume (*V*), and water-surface area (*A*) of ponds (file-identification code 9 used in OPONDS computer program)

[ft; feet; acre-ft, acre-feet; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Unit
1–5	Title lines		-		
6	Data source	ZVAMTH	Data source index for Z-V-A data (= 0).	integer	
7	Pond name	NAME	Pond nodal name.	character	

^{1.} The suggested values are less than 0.5 in. for dormant season and less than 1.4 in. for growing season (Soil Conservation Service, 1985; McCuen, 1989).

^{2.} The suggested values are greater than 1.1 in. for dormant season and greater than 2.1 in. for growing season (Soil Conservation Service, 1985; McCuen, 1989).

Table 24. File format for relations among water-surface elevation (Z), volume (V), and water-surface area (A) of ponds (file-identification code 9 used in OPONDS computer program)—Continued

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Unit
8	Pond character-	ELE	Water-surface elevation.	real	ft
	istic curves among eleva-	CAP	Water volume of a pond at the current elevation.	real	acre-ft
	tion, capacity, and area	AREA	Water-surface area.	real	acre
9	Empty line		Move to next pond node.		
10	Finish	FINISH	Finish reading pond table.	character	

Table 25. File format for regression relations of water-surface elevation (Z), volume (V), and water-surface area (A) of ponds (file-identification code 9 used in OPONDS computer program)

[ft, feet; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type	Unit
1–5	Title lines			~	
6	Data source	ZVAMTH	Data source index for Z-V-A data (= 1).	integer	
7	Pond name	NAME	Pond nodal name.	character	
8	Base and coeffi- cients for each regression equation		Equation sequential number. Zonal elevation base. Coefficient A1. Coefficient A2. Coefficient A3.	integer real real real real	 ft
9	Empty line		Move to next pond node.		
10	Finish	FINISH	Finish reading coefficients of regression equations.	character	

Seasonal Target Water-Demand File

Target water demand in the OPONDS program means that water will be withdrawn from a node; that is, water will be taken out of the canal and control-pond system. Input instructions and explanations of variables are listed in table 26. The file-identification code is 10. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 26. File format for seasonal target water demands (file-identification code 10 used in OPONDS computer program)

[acre-ft, acre-feet; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Water-demand unit	WSUNIT	Water-demand unit code (0—acre-ft, 1— ft^3/s , 2— ft^3/d).	integer
7	List of nodal names	TIME NAME(I), I = 1, NWSND	Time step. Nodal names (see note 1). NWSND is the number of nodes with water demands.	character character
8	Target water demands for each season N, N = 1, NPER	TIME (WSTB (N,J), J = 1, NWSND)	Seasonal target water demands.	character real

Note

Seasonal Water-Surface Evaporation File

Seasonal water-surface evaporation from a pond node or canal segment is calculated using evaporation coefficients and water-surface area. Input instructions and explanations of variables for evaporation coefficients are listed in table 27. The file-identification code is 11. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 27. File format for seasonal water-surface evaporation coefficients (file-identification code 11 used in OPONDS computer program)

[mm/d; millimeters per day; in/d, inches per day; ft/d, feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Unit	EVUNIT	Water-surface evaporation coefficient (0—mm/d; 1—in/d; 2—ft/d).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NEV)	Time. Nodal names (see note 1). NEV is the number of nodes with evaporation coefficients.	character charac- ter

^{1.} Use the nodal name DEFAULT for nodes with the same target water demands. The DEFAULT node must follow the other specified nodes (that is, in last column).

Table 27. File format for seasonal water-surface evaporation coefficients (file-identification code 11 used in OPONDS computer program)—Continued

State- ment num- ber	information at statement	Variabie	Definition	Variabie type
8	Evaporation	TIME	Season index.	character
	coefficients	(EVTB	Evaporation coefficients.	real
	for each sea-	(N,J), J=1,		
	son N, $N = 1$,	NEV)		
	NPER			

Note:

Seasonal Flow-Boundary File

The flow requirements in canals may be different for different seasons. In the linear network setting, these flow requirements are represented by flow boundaries in the associated arcs. Input instructions and explanations of variables for seasonal flow boundaries are listed in table 28. The file-identification code is 12. All data specified in this file can also be included in the general network-configuration and parameter file (table 18).

Table 28. File format for seasonal flow boundaries (file-identification code 12 used in OPONDS computer program)

State- ment				
num- ber	information at statement	Variabie	Definition	Variabie type
1–5	Title lines			
6	Unit	FBUNIT	Flow unit code (0—acre-ft; 1—ft 3 /s; 2—ft 3 /d).	integer
7	List of upstream nodal names	(NAME(J), J = 1, NFBAR)	From-node names of arcs. NFBAR is the number of arcs with seasonal flow boundaries.	character
8	List of down- stream nodal names	(NAME(J), J = 1, NFBAR)	To-node names of arcs.	character
9	Zone index	TIME, (FBIDX(J), J = 1, NFBAR)	Season. Flow-zone index (-1, lower boundary of normal flow zone; +1, upper boundary of normal flow zone; <-2, lower extended flow zone; >+2, upper extended flow zone; that is, $ndex = zone \pm$).	character integer
10	Flow boundaries for each season N, N = 1, NPER		Season. Seasonal flow boundary (see note 1).	character real

Note:

^{1.} Use the nodal name DEFAULT for nodes with the same coefficients. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{1.} For lower or upper extended flow zones, flow boundaries are equal to flow-zone capacities.

Seasonal Pond Rule-Curve File

Management water levels in a pond may change seasonally. The seasonal water levels are represented by the different rule curves in the linear-network flow model. Input instructions and explanations of variables for seasonal rule curves are listed in table 29. The file-identification code is 13. All data specified in this file also can be included in the general network-configuration and parameter file (table 18).

Table 29. File format for seasonal pond rule curves (file-identification code 13 used in OPONDS computer program)

[ft, feet; in., inches; mm, millimeters; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Unit	RCUNIT	Rule-curve elevation unit code (0—ft; 1—in.; 2—mm).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NRCND)	Time. Pond nodal names (see note 1). NRCND is the number of pond nodes with seasonal rule curves.	character character
8	Rule curves for each season N, N = 1, NPER	TIME (RCTB (N,J), J=1, NRCND)	Season. Rule-curve elevations.	character real

Note:

Local Net Incremental Inflow File

The local net incremental inflow file is used to specify nodes and their local net inflows. Local net incremental inflow is the water locally attributed to a node. Input instructions and explanations of variables for local net inflows are listed in table 30. The file-identification code is 16.

Table 30. File format for local net incremental inflows (file-identification code 16 used in OPONDS computer program)

[acre-ft, acre-feet; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Flow unit	IFWCD	Flow unit code (0—acre-ft; 1—ft ³ /s; 2—ft ³ /d).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NIFW)	Time. Nodal names (see note 1). NIFW is the number of nodes with net incremental inflows.	character character

^{1.} Use the nodal name DEFAULT for pond nodes with the same rule curves. The DEFAULT node must follow the other specified nodes (that is, in last column).

Table 30. File format for local net incremental inflows (file-identification code 16 used in OPONDS computer program)—Continued

State- ment num- ber	Information at statement	Variable	Definition	Variable type
8	Net inflows to node for each time period	TIME QIN(I), I = 1, NIFW	Time. Net inflow to nodes (see note 2).	character real

Notes:

Precipitation File

The precipitation file is used to assign precipitation data to nodes. The precipitation data are used to calculate surface runoff to nodes. Input instructions and explanations of variables for precipitation data are listed in table 31. The file-identification code is 17.

Table 31. File format for precipitation data (file-identification code 17 used in OPONDS computer program)

[ft, feet; in., inches; mm, millimeters; acre-ft/d, acre-feet per day; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Data unit	RNUNIT	Data unit code (if rntype = 1, 0 —ft, 1—in., 2—mm; if rntype = 2, 0—acre-ft/d,	integer
		RNTYPE	$1ft^3/s$, $2ft^3/d$). Date type index (1—depth; 2—flux).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NRAIN)	Time. Nodal names (see note 1). NRAIN is the number of nodes with precipitation.	character character
8	Precipitation data for each time period	TIME RAIN(I), I = 1, NRAIN	Time. Precipitation depth or flux rate to nodes.	character real

^{1.} Use the nodal name DEFAULT for nodes with the same net inflows. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{2.} Net inflow to a node can be either a positive or a negative value.

^{1.} Use the nodal name DEFAULT for nodes with the same amount of precipitation. The DEFAULT node must follow the other specified nodes (that is, in last column).

Time-Dependent, Water-Surface Evaporation File

In general, water-surface evaporation coefficients change with time. Even for the same season and the same place, the evaporation coefficients may be significantly different for different years. This file is designed to input time-dependent, water-surface evaporation coefficients for selected nodes. Input instructions and explanations of variables are listed in table 32. The file-identification code is 18.

Table 32. File format for time-dependent, water-surface evaporation coefficients (file-identification code 18 used in OPONDS computer program)

[mm/d; millimeters per day; in/d, inches per day; ft/d, feet per day; --, not applicable]

State- ment num- ber	information at statement	Variable	Definition	Variabie type
1–5	Title lines			
6	Date unit	EVUNIT	Evaporation coefficient unit code (0—mm/d, 1—in/d, 2—ft/d).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NEV)	Time. Nodal names (see note 1). NEV is the number of nodes with water-surface evaporation coefficients.	character character
8	Water-surface evaporation for each time period	TIME (EVTB (0,J), J=1, NEV)	Time. Evaporation coefficients (see note 2).	character real

Notes:

Time-Dependent, Target Water-Demand File

The time-dependent, target water-demand file is used to input target water demands for selected nodes for which water withdrawals change with time. Input instructions and explanations of variables are listed in table 33. The file-identification code is 19.

Table 33. File format for time-dependent, target water demand (file-identification code 19 used in OPONDS computer program)

[acre-ft, acre-feet; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --, not applicable]

State- ment num- ber	information at statement	Variabie	Definition	Variable type
1–5	Title lines			
6	Units of water demand	WSUNIT	Water-demand unit code (0—acre-ft; 1—ft ³ /s; 2—ft ³ /d).	integer

^{1.} Use the nodal name DEFAULT for nodes with the same coefficients. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{2.} If both seasonal and nonseasonal coefficients are specified for the same node, only nonseasonal coefficients are used.

Table 33. File format for time-dependent, target water demand (file-identification code 19 used in OPONDS computer program)—Continued

State- ment num- ber	Information at statement	Variable	Definition	Variable type
7 List of nodal names		TIME NAME(I), I = 1, NWSND	Time step. Nodal names (see note 1). NWSND is the number of nodes with target water demands.	character character
8	Target water demand for each time period	TIME (WSTB (0,J), J = 1, NWSND)	Time. Target water demands (see note 2).	character real

Notes:

Time-Dependent, Pond Rule-Curve File

The target water-surface elevation of a pond changes not only seasonally but also with time (nonseasonal). It is assumed in the OPOND program that the top level of the upper zone and bottom level of the lower zone are kept unchanged. The rule curve of a pond changes between the top level of the upper zone and the bottom level of the lower zone with time. Input instructions and explanations of variables for rule-curve elevations are listed in table 34. The file-identification code is 20.

Table 34. File format for time-dependent, pond rule-curve elevations (file-identification code 20 used in OPONDS computer program)

[ft, feet; in., inches; mm, millimeters; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Unit	RCUNIT	Rule-curve elevation unit code (0—ft; 1—in.; 2—mm).	integer
7	List of nodal names	TIME NAME(J), J = 1, NRCND	Time. Pond nodal names (see note 1). NRCND is the number of nodes with time-dependent rule curves.	character character
8	Rule-curve ele- vations for each time period	TIME (RCTB (0,J), J=1, NRCND)	Time. Rule-curve elevations (see note 2).	character real

^{1.} Use the nodal name DEFAULT for nodes with the same target water demands. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{2.} If both seasonal and nonseasonal values are specified for the same node, only nonseasonal values are used.

^{1.} Use the nodal name DEFAULT for nodes with the same pond rule curves. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{2.} If both seasonal and nonseasonal values are specified for the same node, only nonseasonal values are used.

Time-Dependent, Flow-Boundary File

The time-dependent, flow-boundary file is used to specify flow boundaries that change with time for selected flow zones in canals. Input instructions and explanations of variables are listed in table 35. The file-identification code is 21.

Table 35. File format for time-dependent flow boundaries (file-identification code 21 used in OPONDS computer program)

[acre-ft, acre-feet; ft^3/s , cubic feet per second; ft^3/d , cubic feet per day; --, not applicable; >, greater than; <, less than]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Unit	FBUNIT	Flow unit code (0—acre-ft; 1—ft ³ /s; 2—ft ³ /d).	integer
7	List of upstream nodal names		From-node names. NFBAR is the number of arcs with flow boundaries.	character
8	List of down- stream nodal names	NAME(J), J = 1, NFBAR	To-node names.	character
9	Flow-zone index	•	Time. Flow-zone index (-1, lower boundary of normal flow zone; +1, upper boundary of normal flow zone; <-2, lower extended flow zone; >+2, upper extended flow zone; that is, $index = zone \pm 1$).	character integer
10	Flow boundaries for each time period	•	Time. Flow boundaries (see notes 1 and 2).	character real

Notes:

Ground-Water Elevation File

Ground-water data are used to estimate seepage from ponds and canals. Ground-water elevations are conceptually specified at nodes. Input instructions and explanations of variables for ground-water data are described in table 36. The file-identification code is 22.

^{1.} For lower or upper extended flow zone, set flow boundaries equal to corresponding flow-zone capacities.

^{2.} If both seasonal and nonseasonal values are specified for the same flow zone in the same flow arc, only nonseasonal values are used.

Table 36. File format for ground-water elevations (file-identification code 22 used in OPONDS computer program)

[ft, feet; in., inches; mm, millimeters; acre-ft/d, acre-feet per day; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --,

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Data unit and type	GWUNIT	Data unit code (if gwtype = 1, 0—ft; 1—in.; 2—mm; if gwtype = 2, 0—acre-ft/d; 1 —ft ³ /s; 2—ft ³ /d).	integer
		GWTYPE	Data type code (1—level; 2—flux).	integer
7	List of nodal names	TIME (NAME(J), J = 1, NGWND)	Time. Nodal names (see note 1). NGWND is the number of nodes with ground-water data.	character character
8	Ground-water level or flux for each time period	TIME, GWLVL(I), I = 1, NGWND	Time. Ground-water elevation or flux (see note 2).	character real

Notes:

Fixed-Flow File

One special case of canal flows is when flows are fixed to a certain amount for a given time period. This implies that there are no extended flow zones and that flow in the normal flow zone is constant in the network model. The fixed-flow file is used to specify fixed flows for selected canals. Input instructions and explanations of variables are described in table 37. The file-identification code is 23.

Table 37. File format for fixed flows (file-identification code 23 used in OPONDS computer program)

[acre-ft, acre-feet; ft³/s, cubic feet per second; ft³/d, cubic feet per day; --, not applicable]

State- ment num- ber	Information at statement	Variable	Definition	Variable type
1–5	Title lines			
6	Flow unit	FIXCD	Flow unit code (0—acre-ft; 1—ft ³ /s; 2—ft ³ /d).	integer
7	List of upstream nodes	(NAME(J), J = 1, NFIX)	Upstream nodal names. NFIX is the number of arcs with fixed flows.	character
8	List of down- stream nodes	TIME NAME(J), J = 1, NFIX	Time. Downstream nodal names.	character character

^{1.} Use the nodal name DEFAULT for nodes with the same values. The DEFAULT node must follow the other specified nodes (that is, in last column).

^{2.} If the flux is a negative value, it means the pond gains water from an aquifer.

Table 37. File format for fixed flows (file-identification code 23 used in OPONDS computer program)—Continued

State- ment num- ber	Information at statement	Variable		Definition	Variable type
9	Fixed flow for each time	TIME $Q(I)$, $I = 1$,	Time. Fixed flow.		character real
	period	NFIX	i nica now.		10ui

Network-Configuration Output File

The network-configuration output file is used to summarize input data and the basic network configuration and to store error messages during program execution. The file-identification code is 26. The output file name with the file-identification code 26 must be specified in the master data file. See a sample output in Appendix D for the sample problem.

Nodal-Budget Output File

The nodal-budget output file is used to store nodal budgets for each time period. The output for general nodes includes upstream inflows, local net inflows, surface runoff, water withdrawals, and total outflows from nodes. In addition to these budget terms, budget items for initial storage, surface-water evaporation, bottom seepage, and final storage are added for the pond-budget output. The file-identification code is 27. The output file name with the file-identification code 27 must be specified in the master data file. If the file name is not specified, no nodal water-budget output will be generated.

Canal-Routing Output File

The canal-routing output file summarizes the canal-routing results, which include canal initial storage, inflow, canal seepage, water-surface evaporation, canal final storage, and outflow from each canal. The file-identification code is 28. The output file name with the file-identification code 28 must be specified in the master data file (see tables 16 and 17). If the file name is not specified, no canal water-budget output will be generated.

Outlet Hydraulic-Structure Output File

The output file includes outlet hydraulic-structure information, flow through structure, and structure operation. The structure information includes structure name, type, location, and size. Structure operation means the gate opening height or sharp-crested weir height. The file-identification code is 29. The output file name with the file-identification code 29 must be specified in the master data file (see tables 16 and 17).

List of Nodes for Time-Series Output of Water Budget

This file is used to list selected nodes for which time-series output of water budgets are needed. For the nodal listing, the file-identification code is 30. To specify a node, one nodal name is one record in the file. Two time-series output files for each of the specified nodes are generated. The first output file is for the nodal water budget with the output file as "nb_{nodal_name}.dat", where {nodal_name} is the specified nodal name. The second output file is for downstream releases from a specified node. The name of this output file is "nr_{nodal_name}.dat". If the pro-

gram runs on PC MS-DOS, nodal names are limited to five characters because a file name in PC DOS is limited to eight characters.

List of Canals for Time-Series Output of Canal-Routing Results

This file is used to list selected canals for which time-series output of routing results are needed. For the canal listing, the file-identification code is 31. A canal is represented by upstream and downstream nodal names. One record is specified for each selected canal in the file. The time-series output of the water budget will be saved in separated files for each selected canal. The output file name is of the form "arbud###.out", where ### is the sequential number of selected canals in the file.

APPENDIX C. LIST OF SELECTED VARIABLES AND THEIR DEFINITIONS

Selected variables from the OPONDS program and their definitions are listed along with the variable type, which is presented in parentheses. If a variable is an array, the array dimension is also presented in parentheses.

```
ARBFLG—Logical indicator for arc budget output (LOGICAL).
ARC—Index variable for the current arc (INTEGER).
ARCBUD—List of budget terms for canal routing (unsigned) (LDARC X 0:6; INTEGER).
                 0—Downstream node of a canal reach.
                 1—Inflow.
                 2—Initial storage.
                 3—Canal seepage.
                 4—Canal water-surface evaporation.
                 5—Final storage.
                 6—Outflow.
ARCS—Number of arcs in a basic network (that is, number of physical arcs in the original network) (INTEGER).
ARTYP—List of arc types (LDARC X 1; INTEGER).
                 1—Canal-flow arc: abcd.
                     a = + if normal or upper extended flow zone;
                         - if lower extended flow zone.
                     c = 0 if not a stream arc;
                         1 if a stream arc.
                     d = 0 if normal flow zone:
                         > 0 if extended flow zone number.
                2—Pond-storage arc:
                     a = + upper storage zone;
                         - lower storage zone.
                     b = 2.
                     c = 0.
                     d = zone number (1, 2, ...).
                 3-Pond net value arc.
                 4—Pond evaporation arc or seepage arc.
                5—Surface-runoff arc.
                 6-Water-demand arc.
                7—Local inflow arc.
                8—Canal initial-storage arc.
                9—Canal final-storage arc.
                 10—Canal-seepage arc.
                 11—Canal-evaporation arc.
CARBT—Cumulative arc budgets for whole system (6 x 1; REAL).
                1-Inflow.
                2-Initial storage.
                3—Canal seepage.
                4—Canal water-surface evaporation.
                5—Final storage.
                6—Outflow from the system.
CNDBT—Cumulative nodal budget for whole system (0:10 x 1; REAL).
                0-Initial storage (acre-feet).
                1-Upstream inflow (acre-feet).
                2—Local inflow (acre-feet).
```

3—Evaporation loss for a pond node (acre-feet).

- 4—Precipitation gain (acre-feet).
- 5—Seepage loss for pond node (acre-feet).
- 6-Water withdrawal (acre-feet).
- 7—Total downstream release (acre-feet).
- 8—Final storage for pond node (acre-feet).

COLSTR—Array of strings for general purposes (LDCOL X 1; CHARACTER*30).

CONST—Constant coefficient converting acre-feet per month to cubic feet per second (= 86,400 / 43,560 = 1.98347) (REAL).

COST—Array of penalty coefficients of arcs (**LDARC** X 1; INTEGER).

CSARBT—Array of cumulative water budgets for arcs (LDARC x 0:6; REAL).

- 0—Downstream node of a canal reach.
- 1—Inflow.
- 2—Initial storage.
- 3—Canal seepage.
- 4—Canal water-surface evaporation.
- 5-Final storage.
- 6—Outflow.

CSNDBT—Array of cumulative nodal budgets for nodes (**LDND** x 0:10; REAL).

- 0—Initial storage (acre-feet).
- 1—Upstream inflow (acre-feet).
- 2-Local inflow (acre-feet).
- 3—Evaporation loss for pond node (acre-feet).
- 4—Precipitation gain (acre-feet).
- 5—Seepage loss for pond node (acre-feet).
- 6—Water withdrawal (acre-feet).
- 7—Total downstream release (acre-feet).
- 8—Final storage for pond node (acre-feet).

CTARFW—List of control arc and lower and upper flow boundaries (LDCTAR X 3; INTEGER).

- 0—Control arc number.
- 1-Lower flow boundary.
- 2—Upper flow boundary.

CTERM—A temporary string (char*500).

DEBUG—Logical variable for optimal solution (LOGICAL).

ERR—Error flag (LOGICAL).

EVFIL—Logical indicator for time-dependent evaporation from a file (LOGICAL).

EVFLAG—Logical indicator for pond water-surface evaporation (LOGICAL).

EVND—List of nodes with water-surface evaporation (LDEV X 3; INTEGER).

- 1-Nodal number.
- 2—Data unit code (0—millimeter per day; 1—inches per day; 2—feet per day).
- 3—Sequential number for time-dependent data.

If zero, seasonal data will be used. If negative, the default value is used.

EVTB—Array of seasonal water-surface evaporation coefficients (0:LDP X LDEV; REAL).

EVUNIT—Evaporation coefficient unit code (INTEGER).

FBAR—List of flow-boundary arc information (0:7 X LDFBAR; INTEGER).

- 0—Signed flow-boundary arc.
- 1-Upstream node.
- 2—Downstream node.
- 3—Flow-zone index. index = zone number ± 1 .
 - (-1 lower boundary of normal flow range;
 - +1 upper boundary of normal flow range;
 - <= -2 lower extended flow zone;

```
>= 2 upper extended flow zone).
                4—Next extended arc 1.
                5-Next extended arc 2.
                6—Data unit code (0—acre-feet; 1—cubic feet per second; 2—cubic feet per day).
                7—Seasonal or time-dependent index (0—seasonal, >0—time dependent).
FBFIL—Logical indicator for time-dependent flow boundary from a file (LOGICAL).
FBFLAG—Logical indicator for existing flow-boundary arcs (LOGICAL).
FBTB—List of seasonal or time-dependent flow boundaries for selected arcs (0:LDFBTB x LDFBAR; REAL).
FBUNIT—Unit code for flow boundaries (INTEGER).
                (0—acre-feet; 1—cubic feet per second; 2—cubic feet per day).
FCRIT—Flow-convergence criterion (INTEGER).
FILNAM—List of data and output file names (0:LDFIL X 1; CHAR*30).
FLAG—Logical indicator (LOGICAL).
FLOW—Array of flows in arcs (LDARC X 1; INTEGER).
FLWARC—Logical indicator for canal routing (LOGICAL).
FWFLAG—Indicator for existing local incremental inflow (LOGICAL).
FXAR—List of fixed-flow arc and associated upstream and downstream nodes (0:2 X LDFXAR; INTEGER).
                0-Arc number.
                1-Upstream node.
                2—Downstream node.
FXFLAG—Logical variable for fixed flow (LOGICAL).
FXUNIT—Fixed-flow unit code (INTEGER).
                (0—acre-feet; 1—cubic feet per second; 2—cubic feet per day).
GWFLAG—Logical indicator for ground-water discharge (LOGICAL).
GWLVL—List of ground-water elevations (LDGWND X 1; REAL).
GWND—List of nodes with ground-water seepage (LDGWND X 3; INTEGER).
                1—Nodal number.
                2—Data unit code (0—feet; 1—inches; 2—millimeters).
                3—Sequential number for time-dependent data. If zero, seasonal data will be used.
GWTYPE—Ground-water data type (INTEGER).
                (1-elevation; 2-flux).
GWUNIT—Ground-water-data unit (0:2 x2; CHARACTER*6).
HI—Array of upper flow boundaries of arcs (LDARC X 1; INTEGER).
HYBFLG—Logical indicator for outputting water budgets through outlet hydraulic structures (LOGICAL).
HYDAT—List of hydraulic-structure parameters (LDHY X 5; REAL).
                1—Base elevation (feet).
                2—Weir length or pipe diameter (feet).
                3—Weir height or pipe length (feet).
                4—Gate opening height (feet) or pipe-friction factor.
                5—Pipe-loss factor in constrictions and entrances.
HYDIR—Array for structure and associated upstream and downstream nodal names (LDHY X 0:2; CHAR*12).
                0-Structure name.
                1-Upstream nodal name.
                2—Downstream nodal name.
HYOUT—Array for results for hydraulic-structure operation (LDHY X 3; REAL).
                1—Flow-through structure (cubic feet per second).
                2-Water level of an upstream node (feet).
                3—Gate opening height or weir height (feet).
HYTP—Array of names of hydraulic-structure types available (0:LDHYTP X 1; CHAR*20).
HYTPCD—Array of structure type codes and downstream arcs (LDHY X 0:1; INTEGER).
                0—Structure type code.
                    1-Rectangle sharp-crested weir.
```

2-Vertical flat gate on spillway.

```
3—Vertical flat gate on broad-crested weir.
                    6-Pipe.
                1-Downstream arc number.
I—Index variable (INTEGER).
IFAULT—Index variable for fault code (INTEGER).
IFWCD—Local net inflow unit code (INTEGER).
                0-Acre-feet.
                1—Cubic feet per second (cubic feet per second).
                2—Cubic feet per day (cubic feet per day).
IFWND—List of nodes with local incremental flows (LDIFW X 3; INTEGER).
                1-Nodal number.
               2—Data unit code (0—acre-feet; 1—cubic feet per second; 2—cubic feet per day).
                3—Sequential number for time-dependent data. IF < 0, use default value.
II—An array of upstream nodes for directed arcs (LDARC X 1; INTEGER).
IN—FORTRAN file unit for general network data file (INTEGER).
INST—Array of initial storages at each time step (LDRES X 1; REAL).
IN EV—FORTRAN file unit for evaporation coefficient (INTEGER).
IN FB—FORTRAN file unit for time-dependent flow boundaries (INTEGER).
IN FX—FORTRAN file unit for fixed-flow data (INTEGER).
IN GW—FORTRAN file unit for ground-water-level data (INTEGER).
IN IFW—FORTRAN file unit for local incremental inflow (INTEGER).
IN RC—FORTRAN file unit for time-dependent rule curve (INTEGER).
IN RN—FORTRAN file unit for precipitation data (INTEGER).
IN WS—FORTRAN file unit for target water-demand data (INTEGER).
ISGN—INTEGER function for the sign of an INTEGER (INTEGER).
J—Index variable (INTEGER).
JJ—Array of downstream nodes of directed arcs (LDARC X 1; INTEGER).
KARC—The current out-of-kilter arc (INTEGER).
LAST—Logical indicator at the ending of a file (LOGICAL).
LDARC—Leading dimension for number of arcs in a network (INTEGER).
LDCOL—Leading dimension for the array COLSTR (INTEGER).
LDCTAR—Leading dimension for number of control arcs (INTEGER).
LDEV—Leading dimension for number of nodes with water-surface evaporation (INTEGER).
LDFBAR—Leading dimension for flow-boundary arcs (INTEGER).
LDFBTB—Leading dimension for flow-boundary data matrix (INTEGER).
LDFIL—Leading dimension for number of input-output files (INTEGER).
LDFXAR—Leading dimension for number of fixed-flow arcs (INTEGER).
LDGWND—Leading dimension for number of nodes with ground-water data (INTEGER).
LDHY—Leading dimension for number of hydraulic structures (INTEGER).
LDHYTP—Leading dimension for number of outlet-structure types (INTEGER).
LDIFW—Leading dimension for number of nodes with local incremental inflow (INTEGER).
LDITR—Leading dimension for number of iterations (INTEGER).
LDND—Leading dimension for number of nodes (INTEGER).
LDP—Leading dimension for number of seasons in a year (INTEGER).
LDPL—Leading dimension for pool space (INTEGER).
LDRAIN—Leading dimension for number of nodes with precipitation (INTEGER).
LDRC—Leading dimension for number of nodes with time-dependent rule curves (INTEGER).
LDRCTB—Leading dimension for rule-curve table (INTEGER).
LDREAR—Leading dimension for number of pond arcs (INTEGER).
LDRES—Leading dimension for number of pond nodes (INTEGER).
```

LDRETB—Leading dimension for number of pond-characteristic table (INTEGER).

```
LDRFTB—Leading dimension for runoff data table RNOFTB (INTEGER).
```

LDRNOF—Leading dimension for number of nodes with the surface-runoff data (INTEGER).

LDSABL—Leading dimension for number of single-arc budget lists (INTEGER).

LDSNBL—Leading dimension for number of single-node budget lists (INTEGER).

LDSTR—Leading dimension for number of stream arcs (INTEGER).

LDSTRM—Leading dimension for number of stream-routing arcs (INTEGER).

LDUNIT-Leading dimension for number of units used (INTEGER).

LDWS—Leading dimension for number of water-demand nodes (INTEGER).

LO—Array of lower flow boundaries (LDARC X 1; INTEGER).

MNTH—Current season in characters (CHARACTER*5).

MTH—Current season in numbers such as 1, 2, ... (INTEGER).

MXCST—Maximum value of penalty coefficients (INTEGER).

NARCND—Number of arc nodes (that is, stream nodes) (INTEGER).

NARCS—Number of arcs in a network (INTEGER).

NDBFLG—Logical indicator for outputting the nodal water budgets (LOGICAL).

NDDWAR—Array of downstream flow arcs from nodes (LDARC X 1; INTEGER).

NDNAM-List of nodal names (LDND X 1; CHAR*12).

NDSEQ—List of nodal sequential numbers (LDND X 1; INTEGER).

NDTYP—List of nodal types (LDND X 1; INTEGER).

1-Pond node.

2—General node.

NDWAR—Number of downstream arcs (INTEGER).

NDXAR—List of signed extensional arcs associated with a node (LDND X 6; INTEGER).

1—Pond net-value arc or local net inflow arc.

2-Water-surface-evaporation arc.

3—Precipitation arc.

4-Pond-seepage arc.

5—Target water-demand arc.

6—Target water-demand deviation arc.

NEV—Number of evaporation nodes (INTEGER).

NFBAR—Number of flow-boundary arcs (INTEGER).

NFXAR—Number of arcs with time-dependent, fixed flows (INTEGER).

NGWND—Number of ground-water nodes (INTEGER).

NHY—Number of hydraulic structures (INTEGER).

NHYTP—Number of outlet structure types supported (INTEGER).

NIFW—Number of nodes with local incremental inflows (INTEGER).

NITR—Number of iteration steps (INTEGER).

NNODS—Number of active nodes in a network (that is, original nodes) (INTEGER).

NODBUD—List of budget terms for nodal budgets (LDND X 0:10; INTEGER).

0—Initial storage for a pond node (acre-feet).

1—Upstream inflow (acre-feet).

2—Local inflow (acre-feet).

3—Evaporation loss for pond node (acre-feet).

4—Precipitation runoff (acre-feet).

5—Seepage loss for pond node (acre-feet).

6—Water withdrawal (acre-feet).

7—Total downstream release (acre-feet).

8—Final storage for pond node (acre-feet).

NOP—Index for the current time period (INTEGER).

NOTCOV—Logical convergence indicator (LOGICAL).

NPER—Number of seasons in a year (INTEGER).

NRAIN—Number of nodes with precipitation (INTEGER).

NRCND—Number of nodes with time-dependent, rule curves (INTEGER).

```
NRES—Number of pond nodes (INTEGER).
NRNOF—Number of surface-runoff nodes (INTEGER).
NSABL—Number of arcs needed to output single-arc budget (INTEGER).
NSNBL—Number of nodes needed to output nodal budget (INTEGER).
NSPS—Number of simulation periods (INTEGER).
NSTR—Number of stream reaches with geometrical data (INTEGER).
NSTRM—Number of stream-routing arcs (INTEGER).
NTLS—Number of non-data lines in a data file (INTEGER).
NWSND—The number of water-demand nodes (INTEGER).
OARCS—Old arc (INTEGER).
OCF—Array of old stream coefficients (canal storage) (LDSTRM X 1; REAL).
OFLOW—Array of old flows (LDARC X 1; INTEGER).
OHI—Array of old high boundaries of arcs (LDARC X 1; INTEGER).
OINST—List of old initial pond storages (LDRES X 1; REAL).
OU AR—FORTRAN unit for outputting arc budgets (INTEGER).
OU HY—FORTRAN unit for outputting operating hydraulic structures (INTEGER).
OU ND—FORTRAN unit for outputting nodal budgets (INTEGER).
OU NT—FORTRAN unit for outputting network configuration (INTEGER).
OU SA—FORTRAN unit for file listing arcs for which single-arc budgets are needed (INTEGER).
OU SN—FORTRAN unit for file listing nodes for which single-node budgets are needed (INTEGER).
PERD—Number of days for each time period (REAL).
PN—Part number (INTEGER).
PTDWAR—Pointer of downstream arcs from a node (LDND X 2; INTEGER).
            1—Pointer for first downstream arc.
            2—Pointer for the last downstream arc.
PTRE—Pointer of pond-storage arcs for pond nodes (LDRES X 1; INTEGER).
PTRES—Pointer of pond nodes (that is, list of pond nodes) (LDRES X 1; INTEGER).
RAINND—List of nodes with precipitation (LDRAIN X 3; INTEGER).
            1-Nodal number.
            2—Data unit code (0—feet; 1—inches; 2—millimeters).
            3—Sequential number for time-dependent data. If zero, seasonal data will be used.
RAINTY—Surface-runoff data type (INTEGER).
               (1—precipitation; 2—flux)
RC—Array of pond rule curves in volume (LDRES X 1; REAL).
RCFIL—Logical indicator for time-dependent, rule curves from a file (LOGICAL).
RCFLAG—Logical indicator for time-dependent, rule curves (LOGICAL).
RCND—List of nodes with time-dependent, rule curves (LDRC X 3; INTEGER).
            1-Nodal number.
            2—Data unit code (0—feet; 1—inches; 2—millimeters).
            3—Sequential number for time-dependent data. If zero, seasonal data will be used.
RCTB—Array of time-dependent, rule curves (0:LDRCTB X LDRC; INTEGER).
RCUNIT—Rule-curve unit code (INTEGER).
REAR—Array of pond-storage arcs (LDREAR X 1; INTEGER).
RESDAT—Pond-bottom information (LDRES X 0:2; REAL).
            0—Pond-bottom elevation (feet).
            1—Pond-bed hydraulic conductivity (feet per day).
            2—Pond-bed thickness (feet).
REZN—Array of pond-storage zone capacities (LDREAR X 1; REAL).
RNFLAG—Indicator for existing rain data (LOGICAL).
RNOFND—List of nodes with surface runoff (LDRNOF X 1; INTEGER).
RNOFTB—Array of surface-runoff data (LDRNOF X 0:LDRFTB; REAL).
            0—Initial 5-day antecedent rainfall, in inches.
```

- 1—5-day antecedent rainfall for dry condition, in inches.
- 2-5-day antecedent rainfall for wet condition, in inches.
- 3—Drainage area, in acres.
- 4—SCS curve number for average condition (II).
- RNUNIT—Precipitation unit code (INTEGER).
 - (0—feet; 1—inches; 3—millimeters)
- RPOOL—Pool space (LDPL X 1; REAL).
- RTERM—Temporary REAL number (REAL).
- SABLFG—Logical indicator for single-arc budget list (LOGICAL).
- SABLND—List of arcs with single-arc budget list (LDSABL X 3; INTEGER).
 - 1—Upstream node number.
 - 2—Downstream node number.
 - 3—FORTRAN unit for output budget.
- SAVOPT—Save option for general output (INTEGER).
 - 0—Both input data-file information and network configuration.
 - 1—Input data-file information.
 - 2—Network configuration.
- SKSC—Sink/source node (INTEGER).
- **SNBLFG**—Logical indicator for single-node budget list (LOGICAL).
- SNBLND—List of nodes with single-node budget list (LDSNBL X 3; INTEGER).
 - 1-Nodal number.
 - 2-FORTRAN unit for water-budget output.
 - 3-FORTRAN unit for downstream water releases.
- STMO—Starting season of simulation period in number (INTEGER).
- STRDAT—List of canal-geometry data (LDSTR X 9; REAL).
 - 1—Canal-bed roughness (dimensionless).
 - 2—Canal-reach length (feet).
 - 3—Average canal-bed slope (dimensionless).
 - 4—Canal-base width (feet).
 - 5—Canal-side slope (dimensionless).
 - 6—Canal depth (feet).
 - 7—Canal-bed hydraulic conductivity (feet per day).
 - 8—Thickness of canal bed (feet).
 - 9—Canal-bed elevation at reach entry (feet above sea level).
- STRDIR—List of nodes associated with stream arcs (LDSTR X 3; INTEGER).
 - 1-Upstream node.
 - 2—Downstream node.
 - 3-Middle routing node.
- STRMAR—List of arcs for canal routing. Arc number is signed (LDSTRM X 0:6; INTEGER).
 - 0-Stream nodal number.
 - 1—Signed inflow arc number.
 - 2-Signed initial canal-storage arc number.
 - 3—Canal-seepage arc number.
 - 4—Evaporation arc.
 - 5—Final storage arc.
 - 6—Outflow arc.
- STRMCF—List of canal-routing coefficients (LDSTRM X 0:4; REAL).
 - 0—Canal initial storage (acre-feet).
 - 1—Traveltime (K) (days).
 - 2—Weighting factor (x) (0–0.5, dimensionless).
 - 3—Seepage coefficient (dimensionless).
 - > 0, in percentage of inflow ($< 1.0, 0.01 \sim 0.02$).
 - < 0, seepage will be calculated by Darcy's law.
 - 4—Evaporation coefficient (inches per day).

```
SYSNAM—Name of a system of ponds (CHAR*30).
UNITNM 1—Unit name for discharge (0:2 X 1; CHAR*6).
            0-acre-feet.
            1—cubic feet per second.
            2—cubic feet per day.
UNITNM_2—Unit name for length (0:2 X 1; CHAR*6).
            0-feet.
            1-inches.
            2-millimeters.
UNITNM 3—Unit name for rate (0:2 X 1; CHAR*6).
            0-millimeters per day.
            1-inches per day.
            2-feet per day.
WSFIL—Logical indicator for target water demand from a file (LOGICAL).
WSFLAG—Logical indicator for target water demand (LOGICAL).
WSND—List of nodes with target water demand (LDWS X 3; INTEGER).
            1-Nodal number.
            2—Data unit code (0—acre-feet; 1—cubic feet per second; 2—cubic feet per day).
            3—Sequential number for time-dependent data. If zero, seasonal data will be used.
WSTB—Array of time-dependent or seasonal target water demands (0:LDP X LDWS; REAL).
            WSUNIT—Target water-demand unit code (INTEGER).
             (0-acre-feet; 1-cubic feet per second; 2-cubic feet per day).
XF—Exaggerator factor (REAL).
XP—Number of decimal points for water budget, in acre-feet (INTEGER).
YEAR—Current year (INTEGER).
YES—Logical variable for yes or no (LOGICAL).
YR—Year (INTEGER).
```

ZEROFG—Logical indicator for zero (LOGICAL).

APPENDIX D. CONCEPTUAL SAMPLE PROBLEM

The conceptual sample problem is intended to illustrate the use of the computer program OPONDS for operation of a system of canals and control ponds, especially input data files and output from the program. The conceptual flow system used in this sample problem contains three ponds, three pumping stations for water supply, and three hydraulic structures to control water releases from the ponds (fig. 17). The sample problem specifies that three ponds should be operated to satisfy the downstream water demands at three pumping stations and the minimum flow requirements in channels and to keep pond water levels as close to target levels as possible. In the following section, the input data files for the sample problem are discussed first, and then output files are presented. The data in this sample problem are hypothetical.

Input Data for Conceptual Sample Problem

There are 18 input data files for this sample problem. Contents of these files are described in the following section. For the file format and variable definitions, refer to the input/output instructions in Appendix B.

Master Data File (mdf.dat)

The master data file is used to list all file names for input and output and their associated file-identification codes. The contents of master data file for the sample problem are listed as follows:

```
List of sample data files for the sample problem
 File
 code File name
                           File Description
       0 nsim.dat : Network-configuration file
1 pdzn.dat : Pond-zoning file
       2 ntwk.dat
                         : Network flow-configuration file
                        : Canal-geometry file
       3 geom.dat
                        : Hydraulic-structure file
: Runoff-related data file
       4 hydr.dat
       5 rnof.dat
     9 pzva.dat : Pond-characteristics table file
10 tws.dat : Pond seasonal target water-demand file
11 pet.dat : Pond seasonal water-surface evaporation

    Pond seasonal water-surface evaporation file
    Seasonal rule-curve file

     13 rc.dat
16 ifw.dat
                        : Local incremental flow file
      17 rain.dat
                         : Precipitation file
                        : Water-surface evaporation file
      18 pet2.dat
      19 tws2.dat
                         : Target water-demand file
      20 rc2.dat
                        : Rule-curve data
                        : Ground-water-level file
: Network-configuration output
      22 gwl.dat
      26 nsim.out
      27 ndbt.out
                        : Nodal-budget output: Arc-budget output
      28 arbt.out
                        : Flow-through hydraulic-structure output
      29 hydr.out
      30 snb1.dat
                         : List of nodes for time-series output
      31 sabl.dat
                        : List of arcs for time-series output
```

General Network-Configuration and Parameter File (nsim.dat)

This file is used to specify the simulation period, accuracy of results, and so forth. It is noted that data for network construction and seasonal data also can be included in this file.

```
Operation of a river system
This is a sample problem.

30.42 12 ! Time interval, and number of time steps in a year

10 1996 ! Starting time period and year.

12 ! Number of simulation periods.

0.1 100 ! Flow-convergence criterion and maximum iteration steps.

2 ! Output accuracy. Number of decimal point in acre-feet.

0 ! Output option.
```


Figure 17. Network representation of flow system for sample problem.

Pond Rule-Curve and Zoning File (pdzn.dat)

Storages of pond_1 and pond_2 are divided into two storage zones (lower zone and upper zone). However, the storage of pond_3 is divided into three zones (lower zone, upper zone, and extended upper zone). The rule curves for the three ponds are located at the top of the lower zones. Pond-bottom hydraulic data also are included in this data file. It is noted that units of storage zone, rule curve, and initial storage must be the same. The units can be either feet or acre-feet and are specified in the unit code.

Sar	mple	pond	rule cur	ve and zoni	ng.								
				Bottom	Hydraulic	Bottom	Rule-curve	Zone_1		$Zone_2$		$zone_3$	
			Initial	elevation	cond.	thickness	elev.	elev.	$zone_1$	elev.	Zone_2	elev.	$Zone_3$
Nai	me	Unit	(feet)	(feet)	(ft/d)	(feet)	(feet)	(feet)	coef.	(feet)	coef.	(feet)	coef.
poi	nd_1	0	1274.00	1239.0	0.	1.0	1274.00	1240.00	100	1280.00	1000		
POI	ND_2	0	1350.50	1308.0	0.0001	1.0	1350.50	1320.00	100	1365.00	1000		
POI	ND_3	0	1039.00	1010.0	0.0001	1.0	1039.00	1020.00	100	1050.00	1000	1060.00	2000

Network Flow Configuration File (ntwk.dat)

There are three flow zones from pond_1 node to pump_1 node. Canal-routing coefficients, seepage coefficients, and water-surface-evaporation coefficients also are included in this file.

Network	flow cor	nfigurati	on for sai	mple pr	roblem				
		Lower	Upper		Initia1	Trave1			Evap.
		boundary	boundary	Cost	storage	time	Weight	Seepage	coef.
F_node	T_node	(ft^3/s)	(ft^3/s)	coef.	(acre-ft)	(day)	factor	coef.	(in/d)
$pond_1$	PUMP_1	0.	16000.	10	0.0	1	0.2	0.01	0.0
$pond_1$	PUMP_2	0.	16000.	100	0.0	1	0.2	0.01	0.0
POND_2	PUMP_2	0.	16000.	10	0.0	1	0.2	0.01	0.0
POND_3	PUMP_3	0.	16000.	10	0.0	1	0.2	0.01	0.0
PUMP_1	POND_3	10.0	16000.	10	0.0	1	0.2	-0.01	-1.0
PUMP_2	POND_3	10.0	16000.	10	0.0	1	0.2	0.01	0.0
PUMP_3	sksc	10.0	16000.	10					

Canal Geometry Data File (geom.dat)

Canal geometry data are used for estimating water-surface evaporation and water depth of a selected canal.

Canal g	eometry		Cana1	problem Channel	Canal width	Side	Canal depth	Hydr.	Riverbed thickness	
F-Node	T-Node	coef.	(feet)	slope	(feet)	slope	(feet)	(ft/d)	(feet)	(feet)
pond_1 pump_1 pump_2	pump_1 pond_3 pond_3	0.025		0.01 0.001 0.01	50 50 50	0 0 0	15 10 30	1.0 1.0 1.0	1.0 1.0 1.0	1240.0 1140.0 1140.0

Outlet Hydraulic-Structure File (hydr.dat)

Three kinds of hydraulic structures—sharp-crested weir, gate on spillway, and gate on broad-crested weir—are include in the sample problem.

Hydraul	ic-struct	ture para	meters	for the sa	ample problem		
				Base elevation		Weir height or pipe length	Gate opening or pipe friction
Name	F_Node	T_Node	Туре	(feet)	(feet)	(feet)	(feet)
Gate-1	$Pond_1$	Pump_1	2	1240.00	2.0	0	1.0
Weir-2	Pond_2	Pump_2	1	1340.00	2.0	-20	
Gate-3	Pond_3	Pump_3	3	1020.00	10.0	0	

Surface-Runoff File (rnof.dat)

Surface	e-runoff data for	the sample p	roblem		
	Antecedent 5-	AMC for dry	AMC for wet	SCS	Drainage
	day rainfall	conditions	conditions	curve	area
Name	(inches)	(inches)	(inches)	number	(acres)
C amua	1.0	0.5	1.1	85	10000

Elevation-Volume-Area Relation File (pzva.dat)

Elevation-capacity-area relations of three ponds for the sample problem

```
File format: pond_name
            elevation volume area
Elevation is in feet, volume is in acre-feet; and area is in acres.
          !Z-V-A type(0--table; 1 -- QNWR regression equations)
   1239.0
               0.0
   1240.0
                         42.0
               14.0
   1241.0
               87.3
                       110.0
   1242.0
              200.3
                       116.0
   1243.0
              349.0
                        184.0
                        190.0
   1244.0
              536.0
   1245.0
              762.0
                        264.0
   1246.0
            1032.0
                        276.0
   1247.0
             1351.0
                        364.0
   1248.0
            1724.9
                        384.0
   1249.0
             2181.9
                        534.0
   1250.0
             2784.5
   1251.0
             3428.9
                        764.0
   1252.0
            4210.8
                        800.0
   1253.0
                        934.0
             5076.9
   1254.0
             6028.9
                        970.0
   1255.0
             7062.2
                       1104.0
   1256.0
             8187.1
                       1140.0
   1257.0
            9393.5
                       1274.0
   1258.0 10700.4
                       1340.0
   1259.0 12121.6
                       1504.0
   1260.0
            13668.4
                       1590.0
   1261.0 15339.7
                       1754.0
   1262.0
            17146.4
                       1860.0
   1263.0
            19087.9
                       2024.0
            21164.6
   1264.0
                       2130.0
   1265.0
            23376.1
                       2294.0
   1266.0
            15722.9
                       2400.0
   1267.0
                       2560.0
            28204.5
   1269.0
            33513.1
                       2774 0
   1270.0
            36315.1
                       2830.0
   1271.0
            39211.8
                       2964.0
   1272.0
            42210.7
                       3034.0
   1273.0
           45308.5
                       3162.0
   1274.0
            48506.5
                       3234.0
   1275.0
            58118.1
                       3390.0
            55258.0
                       3490.0
   1276.0
   1277.0
            58827.7
                       3650.0
    1278.0
            62532.6
                       3760.0
   1279.0
                       3920.0
            66372.3
   1280.0
            70347.0
                       4030.0
   1281.0
            74456.0
                       4190.0
    1282.0
            78701.8
                       4300.0
    1283.0
            83076.0
                       4450.0
    1284.0
            87578.0
                       4560.0
    1285.0
            92213.0
                       4710.0
   1286.0
            96978.0
                       4820.0
    1287.0 101892.0
                       5010.0
    1288.0 106982.0
                       5170.0
    1289.0 112266.0
                       5400.0
    1290.0 117764.0
                       5560.0
    1290.0 123380.0
                       5710.0
    1292.0 129165.0
                       5860.0
    1293.0 135095.0
                       6000.0
    1294.0 141174.0
                       6160.0
    1295.0 147414.0
    1296.0 153823.0
                       6500.0
    1297.0 160413.0
                       6680.0
    1298.0 167207.0
                       6910.0
    1299.0 174212.0
                       7100.0
    1300.0 181438.0
                       7340.0
    1301.0 188867.8
                       7520.0
```

1302. 1303. 1304. 1305. 1306. 1307. 1308. 1309.	0 204341 0 212391 0 220656 0 229126 0 237831	7.0 7.0 85.8 85.0 885.0 895.0	7760.0 7920.0 8228.0 8340.0 8600.0 8810.0 9080.0 9290.0
pond_2	0	7.3 7.1 7.1 7.1 7.2 7.2 7.3 7.4 7.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0 3.0 4.0 5.0 6.0 12.0 13.0 13.0 14.0 15.0 16.0 17.0
1008.0 1009.0 1010.0 1011.0 1012.0 1013.0 1014.0 1015.0 1016.0	0 0 0 3 0 20 0 50 0 84 0 122 0 164 0 212	. 0 . 0 . 0 . 0	0.0 0.0 8.4 27.4 32.7 35.3 40.8 43.3 52.9 61.2

```
1018.0
          335.0
                     70.9
1019.0
           411.0
                     81.2
1020.0
           505.0
                    107.4
1021.0
          666.0
                    221.4
1022.0
          966.0
                    386.2
1023.0
         1451.0
                    591.0
1024.0
                    857.2
         2171.0
1025.0
          3167.0
                   1141.5
1026.0
          4467.0
                   1465.2
1027.0
          6089.0
                   1784.1
1028.0
          8054.0
                   2151.7
1029.0
        10517.0
                   2788.0
1030.0
        13576.0
                   3338.2
1031.0
        17332.0
                   4189.9
1032.0
        21788.0
                   4727.5
1033.0
        27038.0
                   5790.4
1034.0
        32947.0
                   6028.4
1036.0
        46511.0
                   7193.9
1037.0
        54164.0
                   8125.5
1038.0
        62433.0
                   8417.4
1039.0
        71284.0
                   9291.8
1040.0
        80723.0
                   9587.0
1041.0
        90745.0
1042.0 101314.0
                  10795.4
1043.0 112626.0
                 11714.8
1044.0 124525.0
                  12084.1
1045.0 137072.0
                  13015.6
1046.0 150271.0
                  13383 2
1047.0 164118.0
                  14316.0
1048.0 178617.0
                  14682.8
1049.0 193774.0
                  15636.2
1050.0 209603.0
                  16022.6
1051.0 226110.0
                  16996.2
1052.0 243309.0
                  17402.6
1053.0 261221.0
1054.0 279875.0
                  18882.6
1055.0
       299292.0
                  19956.3
1056.0 319495.0
                  20450.7
1057.0 340497.0
                  21558.2
1058.0 362316.0
                  22080.9
1059.0 384963.0
                  23217.9
1060.0 408461.0
                  23779.2
1061.0 432828.0
                  24959.5
1062.0 458087.0
                  25559.6
1063.0 484273.0
1064.0 514131.0
                  27500.0
1065.0
       539588.0
                  28819.1
1066.0
       568766.0
                  29538.4
1067.0 598982.0
                  30898.7
1068.0 930250.0
                  31638.7
1069.0 662487.0
                  32839.0
1070.0 695834.0
                  33857.6
1071.0 730152.0
                  34780.5
1073.0 802016.0
                  36862.2
1074.0 839592.0
                  38294.3
1075.0 878315.0
                  39153.3
1076.0 918206.0
                  40633.3
1077.0 959294.0
                 41544.4
1078.0 1001594.0
                  43063.0
1079.0 1045132.0
                  44017.6
1080.0 1089926.0
                 45574.9
```

FINISH

Seasonal Target Water-Demand File (tws.dat)

```
Seasonal water demands for the sample problem
(values are in acre-feet.
      :unit code (0 -- acre-ft, 1 -- ft^3/s, 2 -- ft^3/d)
Date
     PUMP_2 pump_1 PUMP_3
        343
                619
Jan.
         310
                  599
Feb.
                          2330
March
         343
                   619
                          2580
April
         332
                  599
                          2496
May
         343
                   619
                          2580
June
         332
                   599
                          2496
         343
                   619
                          2580
July
```

```
Aug.
          343
                     619
                             2580
Sept.
          332
                     599
                             2496
Oct.
          343
                      619
                             2580
                      599
                             2496
Nov.
          332
                     619
                             2580
Dec.
          343
```

Seasonal Water-Surface-Evaporation Coefficient File (pet.dat)

```
Sample seasonal pond water-surface evaporation coefficients
(Values are in inches per day)
  :unit code(0 -- mm/d, 1 -- in/d, 2 -- ft/d)
Date
                   pond_1
          pond_2
                      0.01
Jan.
           0.1
Feb.
           0.1
                      0.01
                      0.01
March
           0.1
April
           0.1
                      0.01
May
           0.1
                      0.01
June
           0.1
                      0.01
July
           0.1
                      0.01
           0.1
                      0.01
Aug.
Sept.
           0.1
                      0.01
                      0.01
Oct.
           0.1
                      0.01
Nov.
           0.1
Dec.
           0.1
                     0.01
```

Seasonal Rule-Curve File (rc.dat)

```
Seasonal rule-curve data for the sample problem
   :Unit code(0 -- feet; 1 -- inches; 2 -- millimeters)
Date
         Pond_2
Jan.
         1350.5
Feb.
         1355
March
         1360
April
         1355
         1350
Mav
June
         1350
July
         1360
         1360
Aug.
Sept.
         1360
Oct.
         1360
Nov.
         1360
Dec.
         1360
```

Local Net Inflow File (ifw.dat)

```
Local net inflows to three ponds for the sample problem
     :Data unit code (0 -- acre-ft, 1 -- ft^3/s, 2 -- ft^3/d)
         POND_1
                   POND 2
                             POND_3
Date
                   1494.33
                            36962.78
Oct.
         1729.16
Nov.
        1593.61
                  1274.00 32579.50
Dec.
        13222.35
                  9886.98 66895.89
Jan.
        19412.21 13013.84 171310.33
Feb.
         6358.12
                  7925.43 203225.77
March
         723.75
                  2390.50 118321.28
         -407.64
April
                    64.59 67050.85
         2926.71
                   122.61 31301.72
Mav
         -840.34
                 -1525.57 22908.99
June
July
         -435.46 -1355.91
                            8527.78
Aug.
         -126.75
                    94.50
                              66.27
Sept.
          77.64
                    314.43
                            7617.22
```

Precipitation File (rain.dat)

```
Total rainfall to ponds for the sample problem
These value are in inches.

<
<
<
1 :Unit code(0 -- feet; 1 -- inches; 2 -- millimeters)
Date pond_2 Default
Oct. 2.0 0.1
```

File for Time-Dependent, Water-Surface-Evaporation Coefficients (pet2.dat)

```
Time-dependent pond water-surface
evaporation coefficients for the sample problem
1
         :Unit code (0 -- mm/d, 1 -- in/d, 2 -- ft/d)
          ..15 0.1 0.01
0.15 0.1 0.01
0.15 0.1 0.01
0.15 0.1
Date pond_3 pond_1 Default
         0.15
Oct.
                       0.1 0.01
0.1 0.01
0.1
Nov.
Dec.
Jan.
          0.15
0.15
                           0.1 0.01
0.1 0.01
Feb.
March 0.15 0.1 0.01
April 0.15 0.1 0.01
May 0.15 0.1 0.01
June 0.15 0.1 0.01
July 0.15 0.1 0.01
Aug. 0.15 0.1 0.01
Sept. 0.15 0.1 0.01
```

File for Time-Dependent, Target Water Demands (tws2.dat)

```
Time-dependent water demands for the sample problem
     :Unit code (0 -- acre-ft; 1 -- ft^3/s; 2 -- ft^3/d)
0
       pond_3 PUMP_3
Date
Oct.
           2580
                   2600
Nov.
           2330
                    2330
Dec.
            2580
                    2580
           2496
Jan.
            2580
Feb.
                    2580
March
           2496
                   2496
April
            2580
                    2580
            2580
                    2580
Mav
            2496
June
                    2496
July
            2580
                    2580
Aug.
            2496
                    2496
Sept.
            2580
                    2580
```

File for Time-Dependent, Pond Rule Curves (rc2.dat)

File for Ground-Water Elevations (gwl.dat)

```
Ground-water elevations for the sample problem
Elevations are in feet above sea level.
   :Unit code(0 -- feet; 1 -- inches; 2 -- millimeters)
0
                  POND 2
                                                           pump 3
Date
          POND 1
                             POND 3
                                        Pump 1
                                                  Pump 2
Oct.
          1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                  1250 0
                                                            1150 0
                    1355.0
Nov.
          1276.0
                             1045.0
                                       1250.0
                                                  1250.0
                                                           1150.0
                                        1250.0
          1276.0
                    1355.0
                                                  1250.0
                                                           1150.0
Dec.
                              1045.0
          1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                  1250.0
Jan.
Feb.
          1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                  1250.0
                                                           1150.0
          1276.0
                    1355.0
                                        1250.0
                                                  1250.0
                                                            1150.0
                             1045.0
March
                    1355.0
                                        1250.0
                                                  1250.0
          1276.0
                             1045.0
                                                            1150.0
April
          1276.0
                    1355.0
                                        1250.0
                                                  1250.0
                                                            1150.0
Mav
                             1045 0
                                                  1250.0
June
         1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                           1150.0
July
          1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                  1250.0
                                                            1150.0
          1276.0
                    1355.0
                             1045.0
                                        1250.0
                                                  1250.0
                                                           1150.0
                                        1250.0
Sept.
          1276.0
                    1355.0
                             1045.0
                                                  1250.0
                                                           1150.0
```

File for List of Nodes for Time-Series Water-Budget Output (snbl.dat)

This file is used to list nodes for which the time-series output of water budgets is needed. For each node specified, two output files are generated—one for nodal water budget (for example, bpond_1.out) and the other for water releases to downstream nodes (for example, rpond_1.out).

```
pond_1
pond_2
pond_3
pump_1
pump_2
pump_3
```

File for List of Canals for Water-Budget Output (sabl.dat)

This file is used to list canal reaches for which time-series output of water budgets is needed. In this sample problem, only three canals are listed for the time-series output of water budgets. The names of output files are automatically generated from the OPONDS program with the form arbud###.dat, where ### is the sequential number such as 001, 002, and 003 in the list file. For example, the output file name for canal reach from pond_1 to pump_1 is arbud001.dat.

```
pond_1 pump_1
pond_2 pump_2
pump_1 pond_3
```

Sample Problem Output

Four general output files are generated from the OPONDS program for the sample problem. The first one is for the input information and network configuration, the second one is for nodal water budgets, the third one is for canal water budgets, and the final one is for hydraulic-structure operations. The output file names are specified in the master data file. In additional to general outputs, there are two kinds of optional water-budget outputs in time-series format for specified nodes and canal reaches. It should not be expected that the outputs from running the same problem on different computers will match exactly. Small variations in output can be caused by differences in the way real numbers are stored and calculated. Storage and calculation of real numbers depend on the specific computer hardware, the FORTRAN compiler, and the math library that is loaded with the compiled program. Output variations among computers also depend on the size of the problem, the number of iterations required for solution, and the precision used when printing results.

Output File for Input Information and Network Configuration (nsim.out)

Operation of a river system.

Summary of simulation period:

Length of a time step: 30.42 days
Number of time steps of a year: 12
Starting season: 10

Starting year: 1996

Number of simulation time steps: 12
Flow-convergence criterion: 0.100 cubic feet per second

Maximum iteration steps: 100 Number of decimal points: 2

Summary of pond elevation-volume-area relations:

No	Name	Number of records	Minimum elevation (feet)	Maximum elevation (feet)
NO	Name	records	(reec)	(reer)
1	POND_1	71	1239.00	1310.00
2	POND_2	59	1308.00	1366.00
3	POND 3	71	1008.00	1080.00

Part 1: Pond-storage zoning information

POND_1		1		:Pond name and corresponding node number
	1239.00	0.00	1.00	:Bottom elevation, hydraulic conductivity, and thickness
	48506.50			:Initial storage, in acre-feet
	1274.00			:Rule-curve elevation, in feet
1	1240.00	100		:Zone number, elevation, and penalty coefficient
2	1280.00	1000		:Zone number, elevation, and penalty coefficient
POND_2		2		:Pond name and corresponding node number
	1308.00	0.00	1.00	:Bottom elevation, hydraulic conductivity, and thickness
	83856.91			:Initial storage, in acre-feet
	1350.50			:Rule-curve elevation, in feet
1	1320.00	100		:Zone number, elevation, and penalty coefficient
2	1365.00	1000		:Zone number, elevation, and penalty coefficient
POND_3		3		:Pond name and corresponding node number
	1010.00	0.00	1.00	:Bottom elevation, hydraulic conductivity, and thickness
	71284.00			:Initial storage, in acre-feet
	1039.00			:Rule-curve elevation, in feet
1	1020.00	100		:Zone number, elevation, and penalty coefficient
2	1050.00	1000		:Zone number, elevation, and penalty coefficient
3	1060.00	2000		:Zone number, elevation, and penalty coefficient
,	1000.00	2000		. Zone number, elevation, and penalty coefficient

Part 2: Network flow configuration

		•	Upper boundary (cubic feet per second)	Penalty coefficient	Initial storage (acre- feet)	Travel- time (day)	Weighting factor	Seepage coefficient	Evaporation coefficient (inches t per day)
POND_1	PUMP_1	0.00	16000.00	10	0.00	1.00	0.20	0.01	0.00
POND_1	PUMP_2	0.00	16000.00	100	0.00	1.00	0.20	0.01	0.00
POND_2	PUMP_2	0.00	16000.00	10	0.00	1.00	0.20	0.01	0.00
POND_3	PUMP_3	0.00	16000.00	10	0.00	1.00	0.20	0.01	0.00
PUMP_1	POND_3	10.00	16000.00	10	0.00	1.00	0.20	-0.01	-1.00
PUMP_2	POND_3	10.00	16000.00	10	0.00	1.00	0.20	0.01	0.00
PUMP_3	SKSC	10.00	16000.00	10					

PART 3: Canal geometry data

			a 1		D 44		g=: 1	Riverbed hydraulic	5 / b	
F-node name	T-node name	Roughness coefficient	Canal length (feet)	Canal slope	Bottom width (feet)	Side slope	Canal depth (feet)	conductivity (feet per day)		i Entry elevation (feet)
POND_1	PUMP_1	0.0250	1000.00	0.010000	50.00	0.000000	15.00	1.00	1.00	1240.00
PUMP_1	POND_3	0.0250	5000.00	0.001000	50.00	0.000000	10.00	1.00	1.00	1140.00
PUMP_2	POND_3	0.0250	500.00	0.010000	50.00	0.000000	30.00	1.00	1.00	1140.00

Part 4: Hydraulic-structure data

Structure name	F-node name	T-node name	Structure type	Base elevation (feet)	Weir width or pipe diameter (feet)	Weir height or pipe length (feet)	Pipe- friction factor	Pipe- entry loss factor
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	0.00 -20.00 0.00	1.00000 0.00000 0.00000	0.00000

Part 5: Surface-runoff data

Initial criterion 5-day rainfall

Name	Antecedent 5-day rainfall (inches)	•	Wet condition (inches)	SCS curve number	Drainage area (acres)
PUMP_3	1.00	0.50	1.10	85.00	10000.00

Part 10: Seasonal target water demands, in acre-feet

DIIMD 2	DIIMD 1	PUMP_3
_		
343.00	619.00	2580.00
310.00	599.00	2330.00
343.00	619.00	2580.00
332.00	599.00	2496.00
343.00	619.00	2580.00
332.00	599.00	2496.00
343.00	619.00	2580.00
343.00	619.00	2580.00
332.00	599.00	2496.00
343.00	619.00	2580.00
332.00	599.00	2496.00
343.00	619.00	2580.00
	343.00 332.00 343.00 332.00 343.00 343.00 343.00 343.00 332.00	343.00 619.00 310.00 599.00 343.00 619.00 332.00 599.00 343.00 619.00 343.00 619.00 343.00 619.00 343.00 619.00 343.00 599.00 343.00 599.00 343.00 599.00

Part 11: Seasonal water-surface evaporation coefficients, in inches per day

SEASON	POND_2	POND_1	
1	0.10	0.01	
2	0.10	0.01	
3	0.10	0.01	
4	0.10	0.01	
5	0.10	0.01	
6	0.10	0.01	
7	0.10	0.01	
8	0.10	0.01	
9	0.10	0.01	
10	0.10	0.01	
11	0.10	0.01	
12	0.10	0.01	

Part 13: Seasonal rule-curve elevations, in feet

SEASON	POND_2
1	1350.50
2	1355.00
3	1360.00
4	1355.00
5	1350.00
6	1350.00
7	1360.00
8	1360.00
9	1360.00
10	1360.00
11	1360.00
12	1360.00

Summary for local incremental inflow data file:

File name: ifw.dat Data unit: acre-feet

Number of nodes: 3 Number of records: 12

List of nodal names: POND_1 POND_2 POND_3

Summary for precipitation data file: ______

> File name: rain.dat Data unit: inches Number of nodes: 6

Number of records: List of nodal name: POND_2 DEFAULT

Summary for water-surface evaporation coefficient data file:

> File name: pet2.dat Data unit: inches per day

Number of nodes: 6 Number of records: 12

List of nodal name: POND_3 POND_1 DEFAULT

Summary for target water-demand data file:

File name: tws2.dat Data unit: acre-feet Number of nodes: 2 Number of records: 12

List of nodal names: POND_3 PUMP_3

Summary for rule-curve elevation data file:

File name: rc2.dat Data unit: feet Number of nodes: 1
Number of records: 12

List of nodal names: POND_1

Summary for ground-water-level data file:

File name: qwl.dat Data unit: feet Number of nodes: 6 Number of records: 12

POND_2 POND_3 PUMP_1 PUMP_2 List of nodal names: POND_1

PUMP_3

Node name and type of basic network

Node Node number name type 1 POND_1 POND POND_2 POND 2 3 POND_3 POND PUMP_1 PUMP_2 PUMP_3 GENERAL GENERAL GENERAL

Arc	From- node	To- node	Lower (cubic feet per second)	(cubic feet per	Penalty coefficient	Туре
1	SKSC	POND_1	0.00	803.69	100	-201
2	POND 1	SKSC	0.00	361.97	1000	201
3	SKSC	POND_2	0.00	1383.78	100	-201
4	POND 2	SKSC	0.00	2116.07	1000	201
5	SKSC	POND 3	0.00	1173.06	100	-201
6	POND_3	SKSC	0.00	2292.43	1000	201
7	POND_3	SKSC	0.00	3295.78	2000	202
8	POND_1	STRM001004	0.00	16000.00	10	110
9	STRM001004	PUMP_1	0.00	16000.00	10	110
10	POND_1	STRM001005	0.00	16000.00	100	110
11	STRM001005	PUMP_2	0.00	16000.00	100	110
12	POND_2	STRM002005	0.00	16000.00	10	110
13	STRM002005	PUMP_2	0.00	16000.00	10	110
14	POND_3	STRM003006	0.00	16000.00	10	110
15	STRM003006	PUMP_3	0.00	16000.00	10	110
16	PUMP_1	STRM004003	10.00	16000.00	10	110
17	STRM004003	POND_3	10.00	16000.00	10	110
18	PUMP_2	STRM005003	10.00	16000.00	10	110
19	STRM005003	POND_3	10.00	16000.00	10	110
20	PUMP_3	SKSC	10.00	16000.00	10	100

Flow boundary

	,,,,	•	_	_				,	۲	_		ч	_	_	1		_	_	_	-	-	-	_	-	_		_	٦
==	====	==	=	=	=	=:	==	==	==	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	-

Name	Zone 1	Zone 2	Zone 3
POND_1	100	1000	
POND_2	100	1000	
POND_3	100	1000	2000

Flow-zoning penalty coefficients

^	-					7	۳		-	٠.	ı		-	-	-	- '		_			•
=	==	===	==	==	=	==	=	==	==	=:	==	=:	==	==	=	==	==	=	=:	==	

E	m o	Normal flow	Lower flow	Upper flow
From-	To	110%	1100	TIOM
node	node	zone	zone	zone
POND_1	PUMP_1	10		
POND_1	PUMP_2	100		
POND_2	PUMP_2	10		
POND_3	PUMP_3	10		
PUMP_1	POND_3	10		
PUMP_2	POND_3	10		
PUMP_3	SKSC	10		

Nodal water budgets for whole simulation

 	2449000	 	0 4,111 4 4 4 4 4 6 1 7 1 7

Node name	Node type	Initial storage (acre- feet)	Upstream inflow (acre- feet)	Local net inflow (acre- feet)	Evap- ration (acre- feet)	Rainfall (acre- feet)	Seepage (acre- feet)	Withdrawal (acre- feet)	Downstream release (acre- feet)	Final storage (acre- feet)
POND_1	1	48506.50	0.00	44233.36	9070.00	26.95	0.00	0.00	49592.00	34104.81
POND_2	1	83856.91	0.02	33699.75	2006.36	1033.83	-730.60	0.00	42006.13	75308.61
POND_3	1	71284.00	98219.99	766768.44	43382.32	77.43	-1911.17	30374.00	797618.75	66885.85
PUMP_1	2	0.00	49056.46	0.00	0.00	0.00	0.00	7328.00	41728.46	0.00
PUMP_2	2	0.00	41555.05	0.00	0.00	0.00	0.00	4039.00	37516.05	0.00
PUMP_3	2	0.00	789537.75	0.00	0.00	0.00	0.00	30394.00	759143.75	0.00

Canal water budgets for whole simulation

	 2	 	02
=====	 	 	

						Surface		
				Initial	Canal	evapo-	Final	
			Inflow	storage	seepage	ration	storage	Outflow
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-
No.	From	To	feet)	feet)	feet)	feet)	feet)	feet)
1	POND_1	PUMP_1	49592.00	1576.56	495.93	0.00	39.61	49056.46
2	POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00
3	POND_2	PUMP_2	42006.13	1338.02	420.07	0.00	31.01	41555.05
4	POND_3	PUMP_3	797618.75	25902.82	7976.17	0.00	104.85	789537.75
5	PUMP_1	POND_3	41728.46	1817.42	-19448.18	13.97	63.69	61098.98
6	PUMP 2	POND 3	37516.05	1203.05	375.17	0.00	19.88	37121.00

7 PUMP_3 SKSC 759143.75 0.00 0.00 0.00 0.00 759143.75

System water budgets

----Budget Pond Canal Total
----Initial storage: 203647.41 0.00 203647.41
Total net inflow: 844701.56 0.00 844701.56
Runoff: 1138.22 0.00 1138.22
Evaporation: 54458.68 13.97 54472.65
Ground-water seepage: -2641.76 -10180.84 -12822.60
Water withdrawal: 72135.00 0.00 72135.00
Outflow: 0.00 759143.75 759143.75
Final storage: 176299.28 259.03 176558.31

Output File for Nodal Water Budgets (ndbt.out)

					ts for time								
No.	Node name	Node type	Initial storage (acre- feet)	[, not	applicable] Local Net inflow (acre- feet)		Runoff (acre- feet)	Seepage (acre- feet)	t Withdrawal (acre- feet)	ownstream release (acre- feet)	Final storage (acre- feet)	Final stage (feet)	Water depth (feet)
1	POND_1	1	48506.50	0.00	1729.16	819.82	26.95	0.00	0.00	1275.66	48167.13	1273.89	34.89
	POND_1 POND_2	1	83856.91	0.00	1494.33	157.25	1033.83	-84.91	0.00	1015.08	85297.66	1350.74	42.74
	POND_3	1	71284.00	2813.19	36962.78	3533.21	77.43	-169.59	2580.00	33909.79	71284.00	1039.00	29.00
	PUMP_1	2		1222.37	0.00		0.00		619.00	603.37			
	PUMP_2	2		972.68	0.00		0.00		343.00	629.68			
	PUMP_3	2		32493.18	0.00		0.00		2600.00	29893.18			
					s for time								
					applicable]								
			Initial	-	Local Net	Evapo-				ownstream	Final		
			storage	inflow	inflow	ration	Runoff		Withdrawal		storage	Final	Water
	Node	Node	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	stage	depth
	name	type	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	(feet)	(feet)
	POND 1	1	48167.13	0.00	1593.61	817.88	0.00	0.00	0.00	12627.76	36315.10	1270.00	31.00
	POND 2	1	85297.66	0.00	1274.00	160.02	0.00	-81.79	0.00	949.57	85543.86	1350.78	42.78
3	POND_3	1	71284.00	13259.98	32579.50	3533.21	0.00	-169,59	2330.00	40145.87	71284.00	1039.00	29.00
4	PUMP_1	2		12139.73	0.00		0.00		599.00	11540.73			
5	PUMP_2	2		941.33	0.00		0.00		332.00	609.33			
6	PUMP_3	2		39518.70	0.00		0.00		2330.00	37188.70			
					s for time								
			==	[, not	applicable]	*======							
			== Initial	[, not Upstream	applicable] Local Net	Evapo-				ownstream	Final		
	No do	 4-	Initial storage	[, not Upstream inflow	applicable] Local Net inflow	Evapo- ration	Runoff		Withdrawal	release	storage	Final	Water
No.	Node	Node	Initial storage (acre-	[, not Upstream inflow (acre-	applicable] Local Net inflow (acre-	Evapo- ration (acre-	(acre-	(acre-	Withdrawal (acre-	release (acre-	storage (acre-	stage	depth
No.	Node name	Node type	Initial storage	[, not Upstream inflow	applicable] Local Net inflow	Evapo- ration			Withdrawal	release	storage		
	name	type	Initial storage (acre-	[, not Upstream inflow (acre-	applicable] Local Net inflow (acre-	Evapo- ration (acre-	(acre- feet)	(acre-	Withdrawal (acre-	release (acre-	storage (acre-	stage	depth (feet)
1	name	type 1 1	Initial storage (acre- feet)	[, not Upstream inflow (acre- feet)	applicable] Local Net inflow (acre- feet)	Evapo- ration (acre- feet)	(acre- feet)	(acre- feet) 0.00 -81.24	Withdrawal (acre- feet)	release (acre- feet)	storage (acre- feet)	stage (feet)	depth (feet)
1 2 3	name POND_1 POND_2 POND_3	type 1 1	Initial storage (acre- feet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00	(acre- feet) 0.00 -81.24 -169.59	Withdrawal (acre- feet) 0.00 0.00 2580.00	release (acrefeet) 25443.95 962.47 86607.71	storage (acre- feet) 23376.10 94389.13 71284.00	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4	name POND_1 POND_2 POND_3 PUMP_1	type 1 1 1 2	Initial storage (acre- feet) 	[, not Upstream inflow (acre- feet) 	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00	release (acrefeet) 25443.95 962.47 86607.71 24154.01	storage (acre- feet) 23376.10 94389.13 71284.00	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2	type 1 1 2 2	Initial storage (acre- feet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00	release (acrefeet) 25443.95 962.47 86607.71 24154.01 609.47	storage (acre- feet) 	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1	type 1 1 1 2	Initial storage (acre- feet) 	[, not Upstream inflow (acre- feet) 	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00	release (acrefeet) 25443.95 962.47 86607.71 24154.01	storage (acre- feet) 23376.10 94389.13 71284.00	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2	type 1 1 2 2	Initial storage (acre- feet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00	release (acrefeet) 25443.95 962.47 86607.71 24154.01 609.47	storage (acre- feet) 	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2	type 1 1 2 2	Initial storage (acre- feet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acrefeet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time applicable]	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00	release (acrefeet) 25443.95 962.47 86607.71 24154.01 609.47 81679.55	storage (acre- feet) 23376.10 94389.13 71284.00	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2	type 1 1 2 2	Initial storage (acrefeet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 0.00 0.00 0.00 0.00 cs for time applicable] Local Net	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00	release (acrefeet) 	storage (acrefeet) 	stage (feet) 1265.00 1352.15 1039.00	depth (feet) 26.00 44.15 29.00
1 2 3 4 5	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3	type 1 1 1 2 2 2	Initial storage (acrefeet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 0.00 0.00 0.00 0.00 cs for time applicable] Local Net	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 2580.00 Withdrawal	release (acre- feet) 25443.95 962.47 86607.71 24154.01 609.47 81679.55	storage (acre- feet) 23376.10 94389.13 71284.00 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3	type	Initial storage (acrefeet) 36315.10 85543.86 71284.00 Water	[, not Upstream inflow (acrefeet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget [, not Upstream inflow (acre-	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time applicable] Local Net inflow (acre-	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet)	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00	release (acrefeet) 	storage (acre- feet) 23376.10 94389.13 71284.00 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3	type 1 1 1 2 2 2	Initial storage (acrefeet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 0.00 0.00 0.00 0.00 cs for time applicable] Local Net	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -81.24 -169.59	Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 2580.00 Withdrawal	release (acre- feet) 25443.95 962.47 86607.71 24154.01 609.47 81679.55	storage (acre- feet) 23376.10 94389.13 71284.00 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3	type 1 1 2 2 2 2 Node type	Initial storage (acrefeet) 36315.10 85543.86 71284.00 Water	[, not Upstream inflow (acrefeet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget [, not Upstream inflow (acre-	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time applicable] Local Net inflow (acre-	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	(acrefeet)	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00	release (acrefeet) 	storage (acre- feet) 23376.10 94389.13 71284.00 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3 Node name	type 1 1 1 2 2 2 2 Node	Initial storage (acrefeet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget [, not Upstream inflow (acre- feet)	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Runoff (acrefeet)	(acrefeet) 0.00 -81.24 -169.59 Seepage (acrefeet)	Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 2580.00 Withdrawal (acrefeet)	release (acrefeet) 	storage (acre- feet) 	stage (feet) 	depth (feet)
1 2 3 4 5 6 No	name POND_1 POND_2 POND_3 PUMP_1 PUMP_2 PUMP_3	type 1 1 1 2 2 2 2 Node type	Initial storage (acrefeet) 36315.10 85543.86 71284.00 Was	[, not Upstream inflow (acrefeet)	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet) 717.41 160.49 3533.21	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	(acrefeet) 0.00 -81.24 -169.59 Seepage (acrefeet) 0.00	Withdrawal (acrefeet)	release (acrefeet) 	storage (acre- feet) 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6	name POND_1 POND_2 POND_3 PUMP_1 PUMP_1 PUMP_3 Node name POND_1 POND_1 POND_2	type 1 1 2 2 2 2 2 2 Node type 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2	Initial storage (acrefeet) 36315.10 85543.86 71284.00	[, not Upstream inflow (acrefeet)	applicable] Local Net inflow (acre- feet) 13222.35 9886.98 66895.89 0.00 0.00 0.00 cs for time applicable] Local Net inflow (acre- feet) 19412.21 13013.84	Evaporation (acrefeet) 581.53 168.12	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(acrefeet) 0.00 -81.24 -169.59 Seepage (acrefeet) 0.00 -57.42	Withdrawal (acrefeet)	release (acre- feet) 	storage (acre- feet) 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)
1 2 3 4 5 6 6 No	name POND_1 POND_2 POND_3 PUMP_1 PUMP_1 PUMP_3 Node name POND_1 POND_2 POND_2 POND_2 POND_3	type 1	Initial storage (acrefeet) 36315.10 85543.86 71284.00 Initial storage (acrefeet) 23376.10	[, not Upstream inflow (acre- feet) 0.00 0.01 25655.43 24773.01 952.47 84259.55 ater budget [, not Upstream inflow (acre- feet) 0.00 0.00	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet)	(acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	(acrefeet) 0.00 -81.24 -169.59 Seepage (acrefeet) 0.00 57.42 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00 Eps 0.00 2580.00 Eps 0.00 2580.00 Eps 0.00 2580.00 Eps 0.00 2496.00 2496.00	release (acre- feet) 25443.95 962.47 86607.71 24154.01 609.47 81679.55 ownstream release (acre- feet) 443.09 962.09 154318.00	storage (acre- feet) 	stage (feet) 1265.00 1352.15 1039.00 	depth (feet)

Water budgets for time step: 5

		==										
			[, not	applicable								
		Initial		Local Net	Evapo-				ownstream	Final		
		storage	inflow	inflow	ration	Runoff		Withdrawal		storage	Final	Water
Node	Node	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	stage	depth
No. name	type	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	(feet)	(feet)
1 POND_1	1	41763.69	0.00	6358.12	766.47	0.00	0.00	0.00	1219.14	46136.20	1273.25	34.25
2 POND_2	1	106330.19	0.00	7925.43	179.65	0.00	-24.36	0.00		113172.68	1354.79	46.79
3 POND_3	î	86014.83		203225.77	3821.42	0.00	-136.71		173304.08		1042.99	32.99
4 PUMP_1	2		1202.37	0.00		0.00		599.00	603.37			
5 PUMP_2	2		919.47	0.00		0.00		310.00	609.47			
6 PUMP_3	2		170911.70	0.00		0.00			168331.70			
		Wa	ter budget	s for time	step: 6							
		==										
		*		applicable				_		n/ 1		
		Initial		Local Net	Evapo-	Dunaff	0		ownstream	Final storage	Dinal	Water
Node	Node	storage (acre-	inflow (acre-	inflow (acre-	ration (acre-	Runoff (acre-	(acre-	Withdrawal (acre-	release (acre-	(acre-	Final stage	Water depth
No. name	type	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	(feet)	(feet)
1 POND_1	1	46136.20	0.00	723.75	806.29	0.00	0.00	0.00	1235.36	44818.30	1272.84	33.84
2 POND_2	1	113172.68	0.00	2390.50	192.39	0.00	-4.76	0.00	963.20	114412.36	1354.96	46.96
3 POND_3	1	112564.27	2874.73	118321.29	4452.65	0.00	-71.44	2496.00	155599.08	71284.00	1039.00	29.00
4 PUMP_1	2		1222.37	0.00		0.00		619.00	603.37			
5 PUMP_2	2		952.47	0.00		0.00		343.00	609.47			
6 PUMP_3	2		154588.78	0.00		0.00		2496.00	152092.78			
		Wa	tor hudget	s for time	sten. 7							
				EBELLETE								
			[, not	applicable	1							
		Initial		Local Net	Evapo-			D	ownstream	Final		
		storage	inflow	inflow	ration	Runoff	Seepage	Withdrawal	release	storage	Final	Water
Node	Node	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	stage	depth
No. name	type	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	feet)	(feet)	(feet)
1 0000 1		44010 00		407.64	706 40				1012 04	40400 20	1070 06	22.06
1 POND_1 2 POND_2	1 1	44818.30 114412.36	0.00	-407.64 64.59	796.43 195.02	0.00	0.00 -0.94	0.00	1213.84	42400.39 113332.27	1272.06 1354.81	33.06 46.81
3 POND_3	1	71284.00	2874.27	67050.84	3533.21	0.00	-169.59	0.00 2580.00	63981.50	71284.00	1039.00	29.00
4 PUMP_1	2	71204.00	1202.37	0.00		0.00	105.55	599.00	603.37	71204.00		25.00
5 PUMP_2	2		941.47	0.00		0.00		332.00	609.47		+ -	
			66266.83	0.00				2580.00				
6 PUMP_3	2		00200.00	0.00		0.00		2300.00	63686.83			
6 PUMP_3	2					0.00		2500.00	63686.83			
6 PUMP_3	2			s for time		0.00		2380.00	63686.83			
6 PUMP_3	2		ter budget	s for time	step: 8	0.00		2360.00	63686.83			
6 PUMP_3	2	Wa ==	ter budget	s for time	step: 8 	0.00						
6 PUMP_3	2	Wa == Initial	ter budget [, not Upstream	s for time applicable Local Net	step: 8			D	ownstream	Final		Water
		Wa == Initial storage	ter budget [, not Upstream inflow	applicable Local Net inflow	step: 8] Evapo- ration	Runoff	Seepage	D Withdrawal	ownstream release	Final storage	Final	Water depth
6 PUMP_3 Node No. name	Node type	Wa == Initial	ter budget [, not Upstream	s for time applicable Local Net	step: 8			D	ownstream	Final		Water depth (feet)
Node	Node	Wa == Initial storage (acre-	[, not Upstream inflow (acre-	applicable Local Net inflow (acre-	step: 8 Evapo- ration (acre-	Runoff (acre-	Seepage (acre-	D Withdrawal (acre-	ownstream release (acre-	Final storage (acre-	Final stage	depth
Node No. name 1 1 POND_1	Node type 1	Initial storage (acrefeet)	[, not Upstream inflow (acre- feet)	applicable Local Net inflow (acre- feet)	step: 8 Evapo- ration (acre- feet) 771.11	Runoff (acre- feet)	Seepage (acre- feet)	Withdrawal (acrefeet)	ownstream release (acre- feet) 1235.39	Final storage (acre- feet)	Final stage (feet)	depth (feet) 33.35
Node No. name 1 POND_1 2 POND_2	Node type 1 1	Wa === Initial storage (acre- feet) 	[, not Upstream inflow (acrefeet) 0.00 0.00	as for time applicable Local Net inflow (acre- feet) 2926.71 122.61	step: 8 Evaporation (acrefeet) 771.11 192.73	Runoff (acre- feet) 0.00 0.00	Seepage (acre- feet) 0.00 -4.28	Withdrawal (acrefeet) 0.00	ownstream release (acre- feet) 1235.39 32402.33	Final storage (acre- feet) 43320.60 80864.10	Final stage (feet) 1272.35 1350.00	depth (feet) 33.35 42.00
Node No. name 1 POND_1 2 POND_2 3 POND_3	Node type 1 1	Initial storage (acre- feet) 	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acrefeet) 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59	Withdrawal (acrefeet) 0.00 0.00 2580.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34	Final storage (acre- feet) 	Final stage (feet) 	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1	Node type 1 1 2	Initial storage (acre- feet) 	[, not Upstream inflow (acre- feet) 0.00 0.00 31742.23 1222.37	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acre- feet) 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00	ownstream release (acre- feet) 1 1235.39 32402.33 57100.34 603.37	Final storage (acre- feet) 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 2 2	Initial storage (acre- feet) 	ter budget	applicable Local Net inflow (acre- feet) 	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 343.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96	Final storage (acre- feet) 	Final stage (feet) 	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1	Node type 1 1 2	Initial storage (acre- feet) 	[, not Upstream inflow (acre- feet) 0.00 0.00 31742.23 1222.37	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acre- feet) 0.00 0.00 0.00 0.00	Seepage (acrefeet) 0.00 -4.28 -169.59	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00	ownstream release (acre- feet) 1 1235.39 32402.33 57100.34 603.37	Final storage (acre- feet) 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 2 2	Initial storage (acre- feet) 	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00	Seepage (acrefeet) 0.00 -4.28 -169.59	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 343.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96	Final storage (acre- feet) 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 2 2	Initial storage (acre- feet) 	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9	Runoff (acrefeet) 0.00 0.00 0.00 0.00	Seepage (acrefeet) 0.00 -4.28 -169.59	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 343.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96	Final storage (acre- feet) 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 2 2	Wa == Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9	Runoff (acrefeet) 0.00 0.00 0.00 0.00	Seepage (acrefeet) 0.00 -4.28 -169.59	Withdrawal (acrefeet) 	ownstream release (acre- feet) 	Final storage (acre- feet) 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 2 2	Wa == Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evapo-	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59 	D Withdrawal (acre- feet) 0.00 0.00 2580.00 619.00 343.00 2580.00	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3	Node type 1 1 2 2 2	Wa == Initial storage (acrefeet) 42400.39 113332.27 71284.00	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable Local Net inflow	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2	Wa == Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evapo-	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59 	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name	Node type 1 1 2 2 2	Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable Local Net inflow (acre-	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefactor)	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00	Seepage (acre- feet) 0.00 -4.28 -169.59 Seepage (acre-	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name	Node type 1 1 1 1 2 2 2	Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable Local Net inflow (acre- feet)	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet)	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet)	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_1 2 POND_2	Node type 1 1 1 1 2 2 2 2 Node type	Wa == Initial storage (acrefeet) 42400.39 113332.27 71284.00 Wa == Initial storage (acrefeet) 43320.60 80864.10	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net inflow (acre- feet) -840.34 -1525.57	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acre- feet) 0.00 -4.28 -169.59 Seepage (acre- feet) 0.00 -90.89	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_3	Node type 1 1 2 2 2 2 2 Node type 1 1 1	Initial storage (acrefeet)	[, not Upstream inflow (acre-feet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 0.00 s for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acrefeet) 	D Withdrawal (acrefeet)	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 49277.94 71284.00	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name	Node type 1 1 2 2 2 2 Node type 1 1 1 1	Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet) 1272.35 1350.00 1039.00 Final stage (feet) 1271.42 1349.74 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_1 5 PUMP_2 3 POND_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 1 1 2 2 2 2 2	Initial storage (acrefeet) 42400.39 113332.27 71284.00 Wa Initial storage (acrefeet) 43320.60 80864.10 71284.00	[, not Upstream inflow (acrefeet)	applicable: Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable: Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 599.00 332.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 1213.84 0.00 20916.16 603.37 671.94	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name	Node type 1 1 1 2 2 2 2 Node type 1 1 1 1	Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet) 1272.35 1350.00 1039.00 Final stage (feet) 1271.42 1349.74 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_1 5 PUMP_2 3 POND_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 1 1 2 2 2 2 2	Initial storage (acrefeet)	ter budget	applicable: Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable: Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 599.00 332.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 1213.84 0.00 20916.16 603.37 671.94	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_1 5 PUMP_2 3 POND_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 1 1 2 2 2 2 2	Wa == Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 Step: 10	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 599.00 332.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 1213.84 0.00 20916.16 603.37 671.94	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_1 5 PUMP_2 3 POND_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 1 1 2 2 2 2 2	Initial storage (acrefeet) 42400.39 113332.27 71284.00	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_1 5 PUMP_2 3 POND_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_1 5 PUMP_2	Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 1 1 2 2 2 2 2	Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable: Local Net inflow (acrefeet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable: Local Net inflow (acrefeet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 cs for time applicable: Local Net inflow (acrefeet)	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 Step: 10 Evaporation	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 332.00 2496.00	ownstream release (acrefeet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acrefeet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00 Final Final	Final stage (feet) 1272.35 1350.00 1039.00	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_2 4 PUMP_1 5 PUMP_2 6 PUMP_3	Node type 	Wa	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 0.00 0.00 0.00 0.0	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name	Node type 1 1 1 2 2 2 2 2 Node type 	Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet)	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet)	D Withdrawal (acrefeet)	ownstream release (acrefeet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acrefeet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_2 4 PUMP_1 5 PUMP_2 6 PUMP_3	Node type 1 1 1 2 2 2 2 Node type 1 1 1 2 2 2 Node type Node type	Wa	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 0.00 0.00 0.00 0.0	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59	D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_2 3 POND_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_2 6 PUMP_3	Node type 1 1 1 1 2 2 2 2 Node type 1 1 1 2 2 2	Wa == Initial storage (acrefeet) 42400.39 113332.27 71284.00 Wa == Initial storage (acrefeet) 43320.60 80864.10 71284.00 Wa == Initial storage (acrefeet)	[, not Upstream inflow (acrefeet)	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 s for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 0.00 cs for time	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet)	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet)	D Withdrawal (acrefeet) D Withdrawal (acrefeet) D Withdrawal (acrefeet) 0.00 0.00 2580.00 Withdrawal (acrefeet) D Withdrawal (acrefeet)	ownstream release (acre- feet) 	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00 Final storage (acrefeet)	Final stage (feet) 1272.35 1350.00 1039.00 Final stage (feet) 1271.42 1349.74 1039.00 Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name 1 POND_1 2 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_3 Node No. name	Node type 1 1 1 2 2 2 2 Node type 1 1 1 2 2 2 Node type Node type	Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet)	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet)	D Withdrawal (acrefeet)	ownstream release (acrefeet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acrefeet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name	Node type 1 1 2 2 2 2 Node type 2 Node type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Initial storage (acrefeet) Initial storage (acrefeet) Wa Initial storage (acrefeet) 43320.60 80864.10 71284.00 Wa Initial storage (acrefeet) Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 -00 -00 -00 -00 -00 -00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet) 780.74 758.91	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 Seepage (acrefeet) 0.00	D Withdrawal (acrefeet)	ownstream release (acrefeet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acrefeet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 71284.00 Final storage (acrefeet) 38055.91	Final stage (feet)	depth (feet) 33.35 42.00 29.00
Node No. name	Node type Node type Node type Node type 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1	Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.55.91 2908.99 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -435.46 -1355.91 8527.78 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet) Step: 10	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet) 0.00 -95.99 -169.59	D Withdrawal (acrefeet)	ownstream release (acrefeet)	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) Final stage (feet) Final stage (feet) 1271.42 1349.74 1039.00 Final stage (feet) 1270.60 1349.35 1039.00	depth (feet) 33.35 42.00 29.00 Water depth (feet) 32.42 41.74 29.00 Water depth (feet) 31.60 41.35 29.00
Node No. name 1 POND_1 2 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3 Node No. name 1 POND_1 2 POND_2 3 POND_3 4 PUMP_1 5 PUMP_2 6 PUMP_3	Node type 1 1 1 2 2 2 2 2 Node type 1 1 1 1 2 2 2 2 2 Node type 1 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 2 2 2 2 2 Node type 1 1 1 2 2 2 2 Node type 1 1 1 2 2 2 2 Node type 1 1 1 2 2 2 2 Node type	Initial storage (acrefeet)	ter budget	applicable: Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 cs for time applicable: Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 s for time applicable: Local Net inflow (acre- feet) -435.46 -1355.91 8527.78 0.00 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 Step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 Step: 10 Evaporation (acrefeet) 780.74 151.69 3533.21	Runoff (acrefeet) Runoff (acrefeet) Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet) 0.00 -90.89	D Withdrawal (acrefeet) 0.00 0.00 2580.00 619.00 343.00 2580.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 Withdrawal (acrefeet) 0.00 0.00 2496.00 D Withdrawal (acrefeet) 0.00 0.00 332.00 2496.00	ownstream release (acre- feet) 1235.39 32402.33 57100.34 603.37 30735.96 54242.88 ownstream release (acre- feet) 1213.84 0.00 20916.16 603.37 671.94 19368.21	Final storage (acrefeet) 43320.60 80864.10 71284.00 Final storage (acrefeet) 40485.67 79277.94 71284.00 Final storage (acrefeet)	Final stage (feet) 1272.35 1350.00 1039.00 Final stage (feet) 1271.42 1349.74 1039.00 Final stage (feet) 1270.60 1349.35 1039.00	depth (feet) 33.35 42.00 29.00 Water depth (feet) 32.42 41.74 29.00 Water depth (feet) 31.60 41.35 29.00
Node No. name	Node type Node type Node type Node type 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1	Initial storage (acrefeet)	ter budget	applicable Local Net inflow (acre- feet) 2926.71 122.61 31301.72 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.57 22908.99 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -840.34 -1525.55.91 2908.99 0.00 0.00 0.00 as for time applicable Local Net inflow (acre- feet) -435.46 -1355.91 8527.78 0.00	step: 8 Evaporation (acrefeet) 771.11 192.73 3533.21 step: 9 Evaporation (acrefeet) 780.74 151.49 3533.21 step: 10 Evaporation (acrefeet) Step: 10	Runoff (acrefeet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Seepage (acrefeet) 0.00 -4.28 -169.59 Seepage (acrefeet) 0.00 -90.89 -169.59 Seepage (acrefeet) 0.00 -95.99 -169.59	D Withdrawal (acrefeet)	ownstream release (acrefeet)	Final storage (acrefeet) 43320.60 80864.10 71284.00	Final stage (feet) Final stage (feet) Final stage (feet) 1271.42 1349.74 1039.00 Final stage (feet) 1270.60 1349.35 1039.00	depth (feet) 33.35 42.00 29.00 Water depth (feet) 32.42 41.74 29.00 Water depth (feet) 31.60 41.35 29.00

Water	budgets	for	time	step:	11

				[not	applicable]								
No.	Node name	Node type	Initial storage (acre- feet)	Upstream inflow (acre- feet)		Evapo- ration (acre- feet)	Runoff (acre- feet)	Seepage (acre- feet)	Do Withdrawal (acre- feet)	wnstream release (acre- feet)	Final storage (acre- feet)	Final stage (feet)	Water depth (feet)
1	POND_1	1	38055.91	0.00	-126.75	737.82	0.00	0.00	0.00	1234.71	35956.62	1269.87	30.87
	POND 2	1	76905.67	-0.01	94.50	149.49	0.00	-101.28	0,00	961.74	75990.21	1349.20	41.20
	POND 3	1	71284.00	2874.25	66.27	3533.21	0.00	-169.59	2496.00	3038.96	65325.95	1038.32	28.32
	PUMP 1	2		1222.37	0.00		0.00		619.00	603.37			
5	PUMP_2	2		951.97	0.00		0.00		343.00	608.97			
6	PUMP_3	2		3099.37	0.00		0.00		2496.00	603.37			
			Wa	ter budget.	s for time	step: 12							
			wa == Initial	[, not	applicable)				Do	wnstream	Final		
No.	Node name	Node type			applicable)		Runoff (acre- feet)	Seepage (acre- feet)	Do Withdrawal (acre- feet)	wnstream release (acre- feet)	Final storage (acre- feet)	Final stage (feet)	Water depth (feet)
	name	type 	Initial storage (acre- feet)	[, not Upstream : inflow (acre- feet)	applicable] Local Net inflow (acre- feet)	Evapo- ration (acre- feet)	(acre- feet)	(acre- feet)	Withdrawal (acre- feet)	release (acre- feet)	storage (acre- feet)	stage (feet)	depth (feet)
1	name POND_1	type 1	Initial storage (acre- feet)	[, not Upstream inflow (acrefeet)	applicable] Local Net inflow (acre- feet)	Evaporation (acrefeet)	(acre- feet) 	(acre- feet) 0.00	Withdrawal (acre- feet) 0.00	release (acre- feet) 1213.86	storage (acre- feet)	stage (feet) 	depth (feet) 30.21
1 2	name POND_1 POND_2	type 	Initial storage (acre- feet) 35956.62 75990.21	[, not upstream inflow (acrefeet)	applicable) Local Net inflow (acre- feet) 77.64 314.43	Evaporation (acrefeet)	(acre- feet) 0.00 0.00	(acre- feet) 0.00 -103.64	Withdrawal (acre- feet) 0.00 0.00	release (acre- feet) 1213.86 950.63	storage (acre- feet) 34104.81 75308.61	stage (feet) 1269.21 1349.09	depth (feet) 30.21 41.09
1 2 3	name POND_1 POND_2 POND_3	type 1 1	Initial storage (acre- feet)	[, not upstream inflow (acrefeet) 0.00 0.00 2874.26	applicable] Local Net inflow (acre- feet) 77.64 314.43 7617.22	Evaporation (acrefeet)	(acre- feet) 0.00 0.00 0.00	(acre- feet) 0.00	Withdrawal (acre- feet) 0.00 0.00 2580.00	release (acre- feet) 1213.86 950.63 3218.86	storage (acre- feet)	stage (feet) 	depth (feet)
1 2 3 4	name POND_1 POND_2	type 1 1	Initial storage (acre- feet) 35956.62 75990.21 65325.95	[, not upstream inflow (acrefeet)	applicable) Local Net inflow (acre- feet) 77.64 314.43	Evaporation (acrefeet) 715.59 149.03 3309.39	(acre- feet) 0.00 0.00	(acre- feet) 0.00 -103.64 -176.67	Withdrawal (acre- feet) 0.00 0.00	release (acre- feet) 1213.86 950.63	storage (acre- feet) 34104.81 75308.61 66885.85	stage (feet) 1269.21 1349.09 1038.50	depth (feet) 30.21 41.09 28.50
1 2 3 4 5	POND_1 POND_2 POND_3 PUMP_1	type 1 1 1 2	Initial storage (acre- feet) 35956.62 75990.21 65325.95	[, not upstream inflow (acrefeet)	applicable] Local Net inflow (acre- feet) 77.64 314.43 7617.22 0.00	Evaporation (acrefeet) 715.59 149.03 3309.39	(acrefeet) 0.00 0.00 0.00 0.00	(acrefeet) 0.00 -103.64 -176.67	Withdrawal (acrefeet) 0.00 0.00 2580.00 599.00	release (acre- feet) 1213.86 950.63 3218.86 603.37	storage (acre- feet) 34104.81 75308.61 66885.85	stage (feet) 1269.21 1349.09 1038.50	depth (feet) 30.21 41.09 28.50

Output File for Canal Water Budgets (arbt.out)

		Canal va	iter budgets f	:	1				
			ter budgets i		ep: 1				
						Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No.	From	То	feet)	feet)	feet)	feet)	feet)	feet)	second)
1	POND_1	PUMP_1	1275.66	0.00	12.76	0.00	40.53	1222.37	20.26
	POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	POND_2	PUMP_2	1015.08	0.00	10.15	0.00	32.25	972.68	16.12
	POND_3	PUMP_3	33909.79	0.00	339.10	0.00	1077.51	32493.18	538.53
	PUMP_1	POND_3	603.37	0.00	-1669.70	1.16	62.09	2209.82	36.62
	PUMP_2	POND 3	629.68	0.00	6.30	0.00	20.01	603.37	10.00
	PUMP_3	SKSC	29893.18	0.00	0.00	0.00	0.00	29893.18	495.44
		Canal wa	ater budgets f	or time st	:ep: 2				
			erer budgets r	or cime se	.ep. 2				
						Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No.	From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
	POND_1	PUMP_1	12627.76	40.53	126.28	0.00	402.28	12139.73	201.20
	POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	POND_2	PUMP_2	949.57	32.25	9.50	0.00	31.00	941.33	15.60
	POND_3	PUMP_3	40145.87	1077.51	401.46	0.00	1303.22	39518.70	654.96
	PUMP_1	POND_3	11540.73	62.09	-1463.68	1.16	408.72	12656.61	209.76
	PUMP_2	POND_3	609.33	20.01	6.09	0.00	19.87	603.37	10.00
7	PUMP_3	SKSC	37188.70	0.00	0.00	0.00	0.00	37188.70	616.35
			ter budgets f	or time st	.ep: 3				
						Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No	From	То	feet)	feet)	feet)	feet)	feet)	feet)	second)
							1000)	1000)	second)
1	POND_1	PUMP_1	25443.95	402.28	254.44	0.00	818.78	24773.01	410.58
	POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	POND_2	PUMP_2	962.47	31.00	9.63	0.00	31.38	952.47	15.79
	POND_3	PUMP_3	86607.71	1303.22	866.08	0.00	2785.30	84259.55	1396.48
	PUMP_1	POND_3	24154.01	408.72	-1308.12	1.16	817.63	25052.06	415.20
	PUMP_2	POND_3	609.47	19.87	6.09	0.00	19.88	603.37	10.00
	PUMP_3	SKSC	81679.55	0.00	0.00	0.00	0.00	81679.55	1353.72
	_					_			

Canal	water	budgets	for	time	step:	4

	======							
					Surface			
			Initial	Canal	evapo-	Final		Outflow
		Inflow	storage	seepage	ration	storage	Outflow	(cubic
	_	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No. From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
1 POND 1	PUMP 1	443.09	818.78	4.43	0.00	35.06	1222.37	20.26
2 POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 POND_2	PUMP_2	962.09	31.38	9.62	0.00	31.37	952.47	15.79
4 POND_3	PUMP_3	154318.00	2785.30	1543.18	0.00	4974.80	150585.31	2495.73
5 PUMP_1	POND_3	603.37	817.63	-1657.57	1.16	82.67	2994.74	49.63
6 PUMP_2	POND_3	609.47	19.88	6.09	0.00	19.88	603.37	10.00
7 PUMP_3	SKSC	148089.31	0.00	0.00	0.00	0.00	148089.31	2454.36
	Canal wa	ater budgets f	or time st	.ep: 5				
					Surface			
			Initial	Canal	evapo-	Final		Outflow
		Inflow	storage	seepage	ration	storage	Outflow	(cubic
		(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No. From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
1 POND_1	PUMP_1	1219.14	35.06	12.19	0.00	39.64	1202.37	19.93
2 POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 POND_2	PUMP_2	927.65	31.37	9.28	0.00	30.28	919.47	15.24
4 POND_3	PUMP_3	173304.08	4974.80	1733.04	0.00		170911.70	2832.61
5 PUMP_1	POND_3	603.37	82.67	-1668.38	1.16	64.17	2289.09	37.94
6 PUMP_2	POND_3	609.47	19.88	6.09	0.00	19.88	603.37	10.00
7 PUMP_3	SKSC	168331.70	0.00	0.00	0.00	0.00	168331.70	2789.85
	Canal wa	ater budgets f	or time st	ep: 6				
				-				
					Surface			
			Initial	Canal	evapo-	Final		Outflow
		Inflow	storage	seepage	ration	storage	Outflow	(cubic
		(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No. From	То	feet)	feet)	feet)	feet)	feet)	feet)	second)
1 POND_1	PUMP_1	1235.36	39.64	12.35	0.00	40.27	1222.37	20.26
2 POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 POND_2	PUMP_2	963.20	30.28	9.63	0.00	31.38	952.47	15.79
4 POND_3	PUMP_3	155599.08	5634.14	1555.99	0.00		154588.78	2562.08
5 PUMP_1	POND_3	603.37	64.17	-1668.68	1.16	63.70	2271.35	37.64
6 PUMP_2	POND_3	609.47	19.88	6.09	0.00	19.88	603.37	10.00
7 PUMP_3	SKSC	152092.78	0.00	0.00	0.00	0.00	152092.78	2520.71
	Canal wa	ter budgets f	or time st	ep: 7				
	******	==========		*****				
					Surface			
			Initial	Canal	evapo-	Final		Outflow
		Inflow	storage	seepage	ration	storage	Outflow	(cubic
		(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No. From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
1 POND_1	PUMP_1	1213.84	40.27	12.14	0.00	39.60	1202.37	19.93
2 POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3 POND_2	PUMP_2	950.60	31.38	9.51	0.00	31.01	941.47	15.60
4 POND_3	PUMP_3	63981.50	5088.44	639.82	0.00	2163.30	66266.83	1098.28
5 PUMP_1	POND_3	603.37	63.70	-1668.68	1.16	63.69	2270.90	37.64
6 PUMP_2 7 PUMP 3	POND_3 SKSC	609.47	19.88	6.09 0.00	0.00	19.88	603.37	10.00
/ PUMP_3	SKSC	63686.83	0.00	0.00	0.00	0.00	63686.83	1055.52
	Canal wa	ter budgets fo	or time st	ep: 8				
					Surface			
			Initial	Canal	evapo-	Final		Outflow
		Inflow	storage	seepage	ration	storage	Outflow	(cubic
		(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No. From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
	DUMP 1	1025 20	30 60	10.35				
1 POND_1 2 POND_1	PUMP_1	1235.39	39.60	12.35	0.00	40.27	1222.37	20.26
	PUMP_2	0.00	0.00	0.00	0.00	0.00 1030.36	0.00	0.00
3 POND_2 4 POND_3	PUMP_2 PUMP_3	32402.33 57100.34	31.01 2163.30	324.02 571.00	0.00		31078.96	515.09
4 POND_3 5 PUMP_1	POND_3	603.37	63.69	-1668.68	0.00 1.16	1869.75 63.69	56822.88	941.76
6 PUMP_2		30735.96	19.88	307.36	0.00	977.13	2270.88 29471.35	37.64 488.44
6 PUMP_2 7 PUMP_3	POND_3 SKSC	54242.88	0.00	0.00	0.00	0.00	54242.88	488.44 899.00
/ FOMF_3	SKSC	J4242.00	0.00	0.00	0.00	0.00	J4242.00	099.00

Canal wa	ter budgets	for t	ime s	step:	9
----------	-------------	-------	-------	-------	---

		Canal w	ater budgets fo	or time st	ep: 9				
		======				Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No.	From	To	feet)	feet)	feet)	feet	feet)	feet	second)
1	POND_1	PUMP_1	1213.84	40.27	12.14	0.00	39.60	1202.37	19.93
	POND_1	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	POND_2	PUMP_2	0.00	1030.36	0.00	0.00	26.42	1003.94	16.64
	POND_3	PUMP_3	20916.16	1869.75	209.18	0.00	712.52	21864.21	362.37
	PUMP_1 PUMP_2	POND_3 POND_3	603.37 671.94	63.69 977.13	-1668.68 6.73	1.16 0.00	63.69 46.44	2270.88 1595.90	37.64 26.45
	PUMP_2 PUMP_3	SKSC	19368.21	0.00	0.00	0.00	0.00	19368.21	321.00
,	FUMF_3	SKSC	19300.21	0.00	0.00	0.00	0.00	19300.21	321.00
			ater budgets fo		-				
						Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
	From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
	DOND 1	PUND 1	1225 20	30.60	12.25	0.00	40.27	1222 27	20.26
	POND_1 POND 1	PUMP_1 PUMP_2	1235.39 0.00	39.60 0.00	12.35 0.00	0.00	40.27	1222.37	20.26 0.00
	POND_1 POND_2	PUMP_2	960.76	26.42	9.61	0.00	31.20	946.37	15.68
	POND_3	PUMP_3	5478.47	712.52	54.78	0.00	192.32	5943.89	98.51
	PUMP_1	POND_3	603.37	63.69	-1668.68	1.16	63.69	2270.88	37.64
	PUMP_2	POND_3	603.37	46.44	6.03	0.00	20.36	623.41	10.33
7	PUMP_3	SKSC	3363.89	0.00	0.00	0.00	0.00	3363.89	55.75
			ater budgets fo			Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
	From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
		 pund 1	1024 71	40.07	10.25	0.00	40.00	1000 37	20.26
	POND_1 POND_1	PUMP_1 PUMP_2	1234.71 0.00	40.27	12.35	0.00	40.26 0.00	1222.37	20.26 0.00
	POND_2	PUMP_2	961.74	31.20	9.62	0.00	31.36	951.97	15.78
	POND_3	PUMP_3	3038.96	192.32	30.41	0.00	101.50	3099.37	51.37
	PUMP 1	POND_3	603.37	63.69	-1668.68	1.16	63.69	2270.88	37.64
6	PUMP_2	POND_3	608.97	20.36	6.09	0.00	19.87	603.37	10.00
7	PUMP_3	SKSC	603.37	0.00	0.00	0.00	0.00	603.37	10.00
			ater budgets fo		-				
						Surface			
				Initial	Canal	evapo-	Final		Outflow
			Inflow	storage	seepage	ration	storage	Outflow	(cubic
			(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No.	From	To	feet)	feet)	feet)	feet)	feet)	feet)	second)
	POND_1	PUMP_1	1213.86	40.26	12.15	0.00	39.61	1202.37	19.93
	POND_1 POND_2	PUMP_2	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3		PUMP_2	950.63	31.36	9.51	0.00	31.01	941.47	15.60
		_		202 55		0.00	104 07	2442 2-	
	POND_3	PUMP_3	3218.86	101.50	32.14	0.00	104.85	3183.37	52.76
5	POND_3 PUMP_1	PUMP_3 POND_3	3218.86 603.37	63.69	32.14 -1668.68	1.16	63.69	2270.88	37.64
5 6	POND_3	PUMP_3	3218.86		32.14				

Output File for Operation of Hydraulic Structures (hydr.out)

Parameters for hydraulic structures: 1

[-999.99, not flow under gate]

	Upstream	Downstream	iow under gate;	Base	Med	Discharge (cubic	-	Gate-opening
Structure	node		0.t		Weir	,	Water	or weir
Structure	noue	node	Structure	elevation	rength	feet per	elevation	neignt
name	name	name	type	(feet)	(feet)	second)	(feet)	(feet)
Gate-1	Pond_1	Pump_1	Gate spillway	1240.00	2.00	21.14	1274.00	0.35
Weir-2	Pond_2	Pump_2	Sharp-crested weir	1340.00	2.00	16.82	1350.50	8.65
Gate-3	Pond_3	Pump_3	Sluice gate	1020.00	10.00	562.00	1039.00	2.90

Parameters for hydraulic structures: 2 ______

[-999.99, not flow under gate]

Structure name	Upstream node name	Downstream node name	Structure type	Base elevation (feet)	Weir length (feet)	Discharge (cubic feet per second)	Upstream Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1	Pond_1	Pump_1	Gate spillway	1240.00	2.00	209.29	1273.89	3.55
Weir-2 Gate-3	Pond_2 Pond_3	Pump_2 Pump_3	Sharp-crested weir Sluice gate	1340.00 1020.00	2.00 10.00	15.74 665.36	1350.74 1039.00	8.97 3.48
ouce 5	rona_s	r ump_s	Dialoc gace	1020.00	10.00	003.30	1003.00	31.10
		_	raulic structures: 3					
		[-999.99, not fl						
	Upstream	Downstream		Base	Weir	Discharge (cubic	Upstream Water	Gate-opening or weir
Structure	node	node	Structure	elevation		feet per	elevation	
name	name	name	type	(feet)	(feet)	second)	(feet)	(feet)
Gate-1	Dond 1	Dump 1	Cato anillway	1240 00	2 00	421 70	1270 00	7 00
Weir-2	Pond_1 Pond_2	Pump_1 Pump_2	Gate spillway Sharp-crested weir	1240.00 1340.00	2.00 2.00	421.70 15.95	1270.00 1350.78	7.99 9.00
Gate-3	Pond_3	Pump_3	Sluice gate	1020.00	10.00	1435.40	1039.00	8.07
	Da	rameters for hud	raulic structures: 4	ı				
		_	======================================					
		[-999.99, not fl	ow under gate]			D. (T7	a-t 1
	Upstream	Downstream		Base	Weir	Discharge (cubic	Upstream Water	Gate-opening or weir
Structure	node	node	Structure	elevation		feet per	elevation	
name	name	name	type	(feet)	(feet)	second)	(feet)	(feet)
Gate-1 Weir-2	Pond_1	Pump_1	Gate spillway	1240.00	2.00 2.00	7.34 15.95	1265.00 1352.15	0.14 10.37
Gate-3	Pond_2 Pond_3	Pump_2 Pump_3	Sharp-crested weir Sluice gate	1340.00 1020.00	10.00	2557.59	1039.00	-999.99
5466 5	rona_5	rump_5	Dialoc Jaco	1020.00	10.00	2437.33	1033.00	333.33
		rameters for hyd	raulic structures: 5	; -				
		[-999.99, not fl						
	**	D			*** * * * * * * * * * * * * * * * * * *	Discharge	-	Gate-opening
Structure	Upstream node	Downstream node	Structure	Base elevation	Weir	(cubic feet per	Water elevation	or weir
name	name	name	type	(feet)	(feet)	second)	(feet)	(feet)
Gate-1	Pond_1	Pump_1	Gate spillway	1240.00	2.00	20.21	1271.85	0.34
Weir-2	Pond_2	Pump_2	Sharp-crested weir	1340.00	2.00	15.37	1353.87	12.12
Gate-3	Pond_3	Pump_3	Sluice gate	1020.00	10.00	2872.26	1040.53	-999.99
		rameters for hyd	raulic structures: 6					
		[-999.99, not fl		•				
						Discharge	_	Gate-opening
at t	Upstream	Downstream	Characteristics	Base	Weir	(cubic	Water	or weir
Structure name	node name	node name	Structure type	elevation (feet)	(feet)	feet per second)	elevation (feet)	(feet)
				(1661)	(1660)			
Gate-1	Pond_1	Pump_1	Gate spillway	1240.00	2.00	20.47	1273.26	0.34
Weir-2	Pond_2	Pump_2	Sharp-crested weir	1340.00	2.00	15.96	1354.79	13.00
Gate-3	Pond_3	Pump_3	Sluice gate	1020.00	10.00	2578.83	1042.99	13.84
		-	raulic structures: 7					
		 [-999.99, not fl	ow under gatel	ı				
						Discharge		Gate-opening
	Upstream	Downstream		Base	Weir	(cubic	Water	or weir
Structure	node	node	Structure	elevation		feet per	elevation (feet)	-
name	name	name	type 	(feet)	(feet)	second)	(teet)	(feet)
Gate-1	Pond_1	Pump_1	Gate spillway	1240.00	2.00	20.12	1272.84	0.34
Weir-2	Pond_2	Pump_2	Sharp-crested weir	1340.00	2.00	15.75	1354.96	13.18
Gate-3	Pond_3	Pump_3	Sluice gate	1020.00	10.00	1060.40	1039.00	5.76

Parameters for hydraulic structures: 8

		[-999.99, not flo	ow under gate]					
Structure name	Upstream node name	Downstream node name	Structure type	Base elevation (feet)	Weir length (feet)	Discharge (cubic feet per second)	Upstream Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	20.47 537.02 946.35	1272.06 1354.82 1039.00	0.35 1.95 5.09
			raulic structures:					
		[-999.99, not flo		_				
Structure name	Upstream node name	Downstream node name	Structure type	Base elevation (feet)	Weir length (feet)	Oischarge (cubic feet per second)	Upstream Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	20.12 0.00 346.65	1272.36 1350.00 1039.00	0.34 1.95 1.74
			raulic structures: 10					
Structure name		[-999.99, not flo		Base elevation (feet)	Weir length (feet)	Discharge (cubic feet per second)	Upstream Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	20.47 15.92 90.80	1271.42 1349.74 1039.00	0.35 7.96 0.43
		•	raulic structures: 11					
		[-999.99, not flo	ow under gate]			Discharge	II-at moom	Cata-amonina
Structure name	Upstream node name	Downstream node name	Structure type	Base elevation (feet)	Weir length (feet)	(cubic feet per second)	Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	20.46 15.94 50.37	1270.60 1349.35 1039.00	0.36 7.58 0.24
	Pa: ∞=	•	raulic structures: 12	2				
Structure	Upstream node name	[-999.99, not flo Downstream node name	Structure type	Base elevation (feet)	Weir length (feet)	Discharge (cubic feet per second)	Upstream Water elevation (feet)	Gate-opening or weir height (feet)
Gate-1 Weir-2 Gate-3	Pond_1 Pond_2 Pond_3	Pump_1 Pump_2 Pump_3	Gate spillway Sharp-crested weir Sluice gate	1240.00 1340.00 1020.00	2.00 2.00 10.00	20.12 15.76 53.35	1269.87 1349.21 1038.33	0.35 7.44 0.26

Output File for Time-Series Output of Water Budget for Node Pond_1 (bpond_1.out)

		Wa	ter Budgets	for POND	_1						
No.	Initial storage (acre- feet)	Upstream inflow (acre- feet)	Local net inflow (acre- feet)	Evapo- ration (acre- feet)	Runoff (acre- feet)	Seepage (acre- feet)	Withdrawal (acre- feet)	ownstream release (acre- feet)	Final storage (acre- feet)	Final stage (feet)	depth (feet)
1	48506.50	0.00	1729.16	819.82	26.95	0.00	0.00	1275.66	48167.13	1273.89	34.89
2	48167.13	0.00	1593.61	817.88	0.00	0.00	0.00	12627.76	36315.10	1270.00	31.00
3	36315.10	0.00	13222.35	717.41	0.00	0.00	0.00	25443.95	23376.10	1265.00	26.00
4	23376.10	0.00	19412.21	581.53	0.00	0.00	0.00	443.09	41763.69	1271.85	32.85
5	41763.69	0.00	6358.12	766.47	0.00	0.00	0.00	1219,14	46136.20	1273.25	34.25
6	46136.20	0.00	723.75	806.29	0.00	0.00	0.00	1235.36	44818.30	1272.84	33.84
7	44818.30	0.00	-407.64	796.43	0.00	0.00	0.00	1213.84	42400.39	1272.06	33.06
8	42400.39	0.00	2926.71	771.11	0.00	0.00	0.00	1235.39	43320.60	1272.35	33.35
9	43320.60	0.00	-840.34	780.74	0.00	0.00	0.00	1213.84	40485.67	1271.42	32.42
10	40485.67	0.00	-435.46	758.91	0.00	0.00	0.00	1235.39	38055.91	1270.60	31.60
11	38055.91	0.00	-126.75	737.82	0.00	0.00	0.00	1234.71	35956.62	1269.87	30.87
12	35956.62	0.00	77.64	715.59	0.00	0.00	0.00	1213.86	34104.81	1269.21	30.21

Output File for Time-Series Output of Release from Node Pond_1 (rpond_1.dat)

Outflows from POND_1

	P	UMP_1	PUMP_2				
		(cubic	ic (cubic				
	(acre-	feet per	(acre-	feet per			
No.	feet)	second)	feet)	second)			
1	1275.66	21.14	0.00	0.00			
2	12627.76	209.29	0.00	0.00			
3	25443.95	421.70	0.00	0.00			
4	443.09	7.34	0.00	0.00			
5	1219.14	20.21	0.00	0.00			
6	1235.36	20.47	0.00	0.00			
7	1213.84	20.12	0.00	0.00			
8	1235.39	20.47	0.00	0.00			
9	1213.84	20.12	0.00	0.00			
10	1235.39	20.47	0.00	0.00			
11	1234.71	20.46	0.00	0.00			
12	1213.86	20.12	0.00	0.00			

Output File for Time-Series Output of Arc Water Budget (arbud001.out)

Canal water budgets from POND_1 to PUMP_1

				Water-			
		T-1+1-1	1	surface	24		0.1.63
		Initial	Canal	evapo-	Final		Outflow
	Inflow	storage	seepage	ration	storage	Outflow	(cubic
	(acre-	(acre-	(acre-	(acre-	(acre-	(acre-	feet per
No.	feet)	feet)	feet)	feet)	feet)	feet)	second)
1	1275.66	0.00	12.76	0.00	40.53	1222.37	20.26
2	12627.76	40.53	126.28	0.00	402.28	12139.73	201.20
3	25443.95	402.28	254.44	0.00	818.78	24773.01	410.58
4	443.09	818.78	4.43	0.00	35.06	1222.37	20.26
5	1219.14	35.06	12.19	0.00	39.64	1202.37	19.93
6	1235.36	39.64	12.35	0.00	40.27	1222.37	20.26
7	1213.84	40.27	12.14	0.00	39.60	1202.37	19.93
8	1235.39	39.60	12.35	0.00	40.27	1222.37	20.26
9	1213.84	40.27	12.14	0.00	39.60	1202.37	19.93
10	1235.39	39.60	12.35	0.00	40.27	1222.37	20.26
11	1234.71	40.27	12.35	0.00	40.26	1222.37	20.26
12	1213 86	40.26	12 15	0.00	39 61	1202 37	10 03

APPENDIX E. COMPUTER PROGRAM LISTING

```
Name:
                            OPONDS
                            Optimal operation of a system of ponds using linear network flow model.
   Purpose:
   Platform:
                            Unix/DG Aviion
                            1.0
Xiaodong Jian
   Version:
   Author:
                            U.S. Geological Survey
4821 Quail Crest Place
Lawrence, KS 66049
July, 1997
* Date:
*========
            PROGRAM
                                OPONDS
            IMPLICIT
                                NONE
           IMPLICIT NONE
INTEGER LDRES, LDND, LDREAR, LDARC, LDRETB, LDCTAR, LDP, LDFIL,
LDFXAR, NTLS
PARAMETER (LDRES = 100, LDND = 300, LDREAR = 200, LDARC = 1000,
LDRETB = 5000, LDCTAR = 10, LDP = 365, LDFIL = 35,
LDFXAR = 10, NTLS = 5)
INTEGER II(LDARC), JJ(LDARC), HI(LDARC), LO(LDARC), COST(LDARC)
FLOW(LDARC), ARTYP(LDARC), ARCBUD(LDARC, 0:6)
                                                                                                                           COST(LDARC),
            INTEGER
                                OHI (LDARC)
                                REAR(LDREAR), PTRE(LDRES), PTDWAR(LDND, 2), NDDWAR(LDARC)
            INTEGER
                                 REZN(LDREAR)
           REAL REZN(LDREAR)
CHARACTER NDNAM(LDND)*12
INTEGER NDTYP(LDND), NDSEQ(LDND), NDXAR(LDND,6),
NODBUD(LDND,0:10)
INTEGER NNODS, NDWAR, SKSC, NARCS
REAL APRX, CONST, PERD
LOGICAL ZEROFG
IMPROCEL LDBC LDBCTB
           LOGICAL ZEROFG
INTEGER LDRC, LDRCTB
PARAMETER (LDRC = LDRES, LDRCTB = LDP)
REAL INST(LDRES), RC(LDRES)
INTEGER NRCND, RCND(LDRC, 3), RCUNIT
REAL RCTB(0:LDRCTB, LDRC)
LOGICAL RCFLAG, RCFIL
CHARACTER SYSNAM*40, MNTH*5
            INTEGER
                                ΡN
                                OINST(LDRES)
           REAL
           INTEGER
                                NOP, NSPS, STMO, YR, I, NRES
                                NPER
            INTEGER
            INTEGER
                                ARC, YEAR, MTH, KARC
            INTEGER
                                J, MXCST
FCRIT, OFLOW(LDARC), NITR, LDITR, OARCS
            INTEGER
            INTEGER
            INTEGER
                                ISGN
           LOGICAL
                                FLWARC,
                                               NOTCOV
           INTEGER IN, IN_IFW, IN_RN, IN_EV, IN_WS, IN_RC, IN_GW, IN_FX
INTEGER IN_FB
INTEGER OU_NT, OU_ND, OU_AR, OU_HY, OU_SN, OU_SA
LOGICAL NDFLG, ARBFLG, HYBFLG
INTEGER CTARFW(LDCTAR, 3), NCTAR
CHARACTER FILNAM(0:LDFIL)*30
INTEGER LDSTBM
            INTEGER
                                LDSTRM
           PARAMETER (LDSTRM = LDARC)
INTEGER STRMAR(LDSTRM, 0:6), NSTRM, NARCND
REAL STRMCF(LDSTRM, 0:4)! OCF(LDSTRM)
           REAL
INTEGER
                                LDSTR
           INTEGER (LDSTR = LDSTRM)
INTEGER NSTR, STRDIR(LDSTR, 3)
REAL STRDAT(LDSTR, 9)
           REAL STRUBT (LDSTR, 9)

INTEGER LDHY, LDHYTP

PARAMETER (LDHY = LDND, LDHYTP = 6)

CHARACTER HYDIR(LDHY, 0:2)*12

INTEGER NHY, HYTPCD(LDHY, 0:1), NHYTP

REAL HYDAT(LDHY, 5), HYOUT(LDHY, 3)

CHARACTER HYTP(0:LDHYTP)*20

INTEGER PTRES(LDRES)

REAL RESDAT(LDRES, 0:2)

INTEGER YP
           INTEGER
           INTEGER
           REAL
           INTEGER
                                LDIFW
                               LDIFW = LDND)
NIFW, IFWND(LDIFW, 3), IFWCD
NFXAR, FXAR(0:2, LDFXAR), FXUNIT
FWFLAG, FXFLAG
           PARAMETER
           INTEGER
           INTEGER
           LOGICAL
           INTEGER
                                LDWS
                               LDWS = LDND)
NWSND, WSND(LDWS, 3), WSUNIT
WSTB(0:LDP, LDWS)
WSFLAG, WSFIL
           PARAMETER
           INTEGER
           REAL
           LOGICAL
           INTEGER
                                LDEV
           INTEGER LDEV = LDRES)
INTEGER NEV, EVND(LDEV, 3), EVUNIT
REAL EVTB(0:LDP, LDEV)
          REAL
LOGICAL
                               EVFLÀG, EVFIL
                               LDGWND
           INTEGER
```

```
PARAMETER (LDGWND = LDND)
INTEGER NGWND, GWND(LDGWND, 3), GWTYPE
REAL GWLVL(LDGWND)
                          GWUNIT(0:2, 2)*21

LDRAIN, LDRNOF, LDRFTB

(LDRAIN = LDND, LDRNOF = LDND, LDRFTB = 4)

NRAIN, RAINND(LDRAIN, 3), RAINTY

RNFLAG
        LOGICAL
        CHARACTER GWUNIT(0:2, INTEGER LDRAIN, LDR
        PARAMETER
        INTEGER
       LOGICAL RNFLAG
INTEGER NRNOF, RNOFND(LDRNOF)
REAL RNOFTB(LDRNOF, 0:LDRFTB), A5DR(LDRNOF, 5)
CHARACTER RNUNIT(0:2, 2)*21
INTEGER LDFBAR, LDFBTB
PARAMETER (LDFBAR = LDARC, LDFBTB = LDP)
INTEGER NFBAR, FBAR(0:7, LDFBAR), FBUNIT
REAL FBTB(0:LDFBTB, LDFBAR)
LOGICAL FBFLAG, FBFIL
INTEGER LDSNBL, LDSABL
PARAMETER (LDSNBL = LDRES, LDSABL = 100)
INTEGER LDSNBL, SNBLRO(LDSNBL, 3), NSABL, SABLND(LDSABL, 3)
INTEGER LDUNIT
        LOGICAL
       INTEGER LDUNIT = 2)
CHARACTER UNITNM_1(0:2)*21, UNITNM_2(0:2)*21, UNITNM_3(0:2)*21
REAL CNDBT(0:10), CARBT(6), CSNDBT(LDND, 0:10),
CSARBT(LDARC,0:6)
INTEGER SAVOPT
INTEGER LDPL, LDCOL
PARAMETER (LDPL = LDND, LDCOL = 50)
CHARACTER CTERM*500, COLSTR(LDCOL)*30
REAL RTERM, RPOOL(LDPL)
INTEGER IFAULT
LOGICAL FLAG
                          FLAG
ERR, LAST, DEBUG, CHECK
/NDNAME/ NDNAM
/SAVOPT/ SAVOPT
/CHECK/ CHECK
       LOGICAL
LOGICAL
        COMMON
        COMMON
       COMMON
                          DATA
       DATA
       DATA
                                                                                            'inches per day',
       DATA
                                                                                      'cubic feet per second',
       DATA
                                                                                       'cubic feet per second',
       ZEROFG = .TRUE.
                       Open data files and assign associated fortran file units
       CALL OPMDF(FILNAM, LDFIL, CTERM, COLSTR,
       PRINT *,
IN = 8
                          'Please wait! Processing data files
       CALL IO_OPFIL(IN, 1, FILNAM(0), 'ENTER NETWORK FILE: ')
                       Open output files
       OU_NT = 26
OU_ND = 27
OU_AR = 28
                                       ! GENERAL OUPUT.
                                       ! NODAL BUDGET
! ARC BUDGET
       OU_AR = 28 ! ARC BUDGET

OU_HY = 29 ! FLOW IN STRUCTURE.

OU_SN = 30 ! SINGLE NODAL BUDGET LIST.

OU_SA = 31 ! SINGLE ARC BUDGET LIST.

CALL IO_OPFIL(OU_NT, 3, FILNAM(OU_NT), 'ENTER GENERAL OUTPUT: ')

IF (FILNAM(OU_ND) .EQ. '') THEN
                                                                     NDBFLG = .FALSE.
       ELSE
                                 NDBFLG = .TRUE.
CALL IO_OPFIL(OU_ND, 3, FILNAM(OU_ND),
'ENTER NODAL BUDGET OUTPUT: ')
       IF (FILNAM(OU_AR) .EQ. ' ') THEN
                                                                     ARBFLG = .FALSE.
       ELSE
                                         ARBFLG = .TRUE.
CALL IO_OPFIL(OU_AR, 3, FILNAM(OU_AR),
'ENTER ARC BUDGET OUTPUT: ')
       ENDIF
       IF (FILNAM(OU_HY) .EQ. ' ') THEN
                                                                     HYBFLG = .FALSE.
       ELSE
                                         HYBFLG = .TRUE.
CALL IO_OPFIL(OU_HY, 3, FILNAM(OU_HY),
'ENTER STRUCTURE OUTPUT: ')
IN_IFW = 16
```

```
IN_EV
IN_WS
IN_RC
                       = 18
= 19
                       = 20
= 21
= 22
= 23
          IN_FB
IN GW
                          Initialize some arrays and assign constants.
          CONST = 86400.0 / 43560.0 APRX = .5
          -----Initialization
          NOP = 0
          NARCS = 0
NCTAR = 0
          LAST = .FALSE.
ERR = .FALSE.
FLWARC = .FALSE.
DO I = 1, LDARC
                                                                             FLOW(I) = 0
OFLOW(I) = 0
COST(I) = 0
REAR(I) = 0
NDDWAR(I) = 0
          ENDDO
          DO I = 1, LDND
                                                                           NDNAM(I) = ' '
PTDWAR(I, 1) = 0
PTDWAR(I, 2) = 0
          ENDDO
          DO 13 I = 1, LDRES
                                                                                PTRE(I) = 0
    13 CONTINUE
          SKSC = LDND
NDNAM(SKSC) = 'SKSC'
          NDWAR = 0
NSTRM = 0
          NITR = 0
                          Set default value
         PERD = 30.42
NPER = 12
XP = 0
XF = 10**XP
          FCRIT = INT(0.1 * PERD * CONST * XF)
LDITR = 100
NIFW = 0
          NWSND = 0
          NEV = 0
NRCND = 0
NRAIN = 0
          NGWND = 0
NFBAR = 0
          NFXAR = 0
                          Read symtem name, simulation period, time period length, and output accuracy in no. of decimal points in ac-ft.
         READ (IN, '(A)') SYSNAM
READ (IN, '(A)')
READ (IN, *) PERD, NPER
READ (IN, *) STMO, YR
READ (IN, *) NSPS
READ (IN, *) NSPS
READ (IN, *) XP
          SAVOPT = 0
          CALL GETINT(SAVOPT, IN, IFAULT)
         WRITE (OU_NT, 802) SYSNAM, PERD, NPER, STMO, YR, NSPS, RTERM, LDITR, XP
802
         FORMAT (A
                        'Summary of simulation period: ',
        &
                           Length of a time step: ', F7.2, 'days',

Number of time steps of a year: ', I4,
Starting season: ', I4,
Starting year: ', I4,
Number of simulation time steps: ', I4,
Flow-convergence criterion: ', F8.3,
'cubic feet per second',
Maximum iteration steps: ', I4,
Number of decimal points: ', I4)
         \begin{array}{rcl} XP &=& XP + 1 \\ XF &=& 10 * * XP \end{array}
          IF (RTERM .NE. 0) THEN
                                                    FCRIT = INT(RTERM * PERD * CONST * XF)
         ENDIF
```

*-----READ RESERVOIR CAPACITY TABLES

```
CALL SETZVA(NRES, NNODS, NDNAM, NDT
FILNAM(9), NTLS, OU_NT)
                                                     NDNAM, NDTYP, LDND,
                       Read reservoir zoning, network configuration, other physical parameters, and seasonal-dependent
                       data.
    ------ (READ RESERVOIR ZONES (BOUNDS) AND CREATE THE BASIC
                                    storage arcs of reservoirs.
                  NETWK_1(NDNAM, NDSEQ, LDND,
NARCS, II, JJ, HI, LO, COST, ARTYP, LDARC,
NRES, PTRES, RC, INST, RESDAT, LDRES,
PTRE, LDRES, REAR, REZN, LDREAR,
SKSC, XF, FILNAM(PN), NTLS,
IN, OU_NT, PN)
       &
       &
       æ
       -----2. Channeel flow bounds and stream routing
                               coefficients
        PN = 2
CALL NETWK_2(NNODS, NDNAM, NDTYP, LDND,

NARCS, II, JJ, HI, LO, COST, ARTYP, LD

NARCND, NSTRM, STRMCF, STRMAR, LDSTRM,
PTDWAR, LDND, NDWAR, NDDWAR, LDARC,
NCTAR, CTARFW, LDCTAR,
PERD, CONST, XF, FILNAM(PN), NTLS,
IN, OU_NT, PN)

IF (NSTRM .GT. 0) FLWARC = .TRUE.

ARCS = NARCS
MXCST = -9999
DO I = 1, NARCS
         PN = 2
       &
       &
         DO I = 1, NARCS
                                            IF (COST(I) .GT. MXCST) MXCST = COST(I)
        ENDDO
DO 16 I = 1, NRES
                                                               OINST(I) = INST(I)
16
        CONTINUE
    ----3. Read Channel geometry data such as length, roughtness
                                   slope, riverbed hydraulic conductivity.
        ----4. Read parameters for hydraulic structures
        PN = 4
CALL HYDR_DAT(NNODS, NDNAM, LDND, JJ, LDARC,
PTDWAR, LDND, NDDWAR, LDARC,
NSTRM, STRMAR, LDSTRM,
NHYTP, HYTP, LDHYTP,
NHY, HYDIR, HYTPCD, HYDAT, LDHY,
FILNAM(PN), NTLS, IN, OU_NT, PN,
CTERM, COLSTR, LDCOL)
       &
&
     -----5. Surface runoff parameters
        FN = 5
CALL RNOF_DAT(NDNAM, LDND,
NRNOF, RNOFND, LDRNOF, RNOFTB, LDRFTB, A5DR,
FILNAM(PN), NTLS, IN, OU_NT, PN,
CTERM, COLSTR, LDCOL)
       &
       æ
     -----10. Seasonal target water demands
        PN = 10
WSFLAG = .FALSE
        WOILDG - FRAISE.
CALL TWS_DAT(NNODS, NDNAM, LDND, NWSND, WSND, LDWS, NPER, WSTB,
LDP, WSUNIT, WSFLAG, PN, FILNAM(PN), NTLS, IN, OU_NT,
UNITNM_1, LDUNIT, CTERM, COLSTR, LDCOL)
                   -----11. Seasonal surface water evaporation coefficients
        PN = 11
        CALL RESEV_DAT (NNODS, NDNAM, LDND, NEV, EVND, LDEV,
NPER, EVTB, LDP, EVUNIT, EVFLAG,
FILNAM(PN), NTLS, IN, OU_NT, PN,
UNITNM_3, LDUNIT, CTERM, COLSTR, LDCOL)
                  -----12. Seasonal flow bounds
        PN = 12
        CALL FB_DAT(II, JJ, ARTYP, LDARC, NDNAM, LDND,

NFBAR, FBAR, LDFBAR, FBTB, LDFBTB,
FBUNIT, FBFLAG, FILNAM(PN), NTLS, IN, PN, OU_NT,
PTDWAR, LDND, NDDWAR, LDARC,
UNITNM_1, LDUNIT, CTERM, COLSTR, LDCOL)
            -----13. Seasonal rule curve
```

```
PN = 13
CALL RC_DAT(NNODS, NDNAM, LDND,
NRCND, RCND, LDRC, NPER, RCTB, LDRCTB, RCUNIT, RCFLAG,
FILNAM(PN), NTLS, IN, OU_NT, PN,
UNITNM_2, LDUNIT, CTERM, COLSTR, LDCOL)
-----Open time-dependent data file
-----1. Open local incremental inflow file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NIFW, IFWND, LDIFW, IFWCD,
UNITNM_1, LDUNIT, FWFLAG, FLAG, FILNAM(IN_IFW),
NTLS, IN_IFW, OU_NT, 'local incremental inflow',
CTERM, COLSTR, LDCOL)
    &
   &
      ----2. Open a rainfall data file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NRAIN, RAINND, LDRAIN, RAINTY,
RNUNIT, LDUNIT, RNFLAG, FLAG, FILNAM(IN_RN),
NTLS, IN_RN, OU_NT, 'precipitation',
CTERM, COLSTR, LDCOL)
   &
-----Open water surface coefficient file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NEV, EVND, LDEV, EVUNIT,
UNITNM_3, LDUNIT, EVFLAG, EVFIL, FILNAM(IN_EV),
NTLS, IN_EV, OU_NT,
'water-surface evaporation coefficient',
CTERM, COLSTR, LDCOL)
        ----Open target water demand file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NWSND, WSND, LDWS, WSUNIT, UNITNM_1, LDUNIT, WSFLAG, WSFIL, FILNAM(IN_WS), NTLS, IN_WS, OU_NT, 'target water-demand', CTERM, COLSTR, LDCOL)
-----Open rule curve data file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NRCND, RCND, LDRC, RCUNIT, UNITNM_2, LDUNIT, RCFLAG, RCFIL, FILNAM(IN_RC), NTLS, IN_RC, OU_NT, 'rule-curve elevation', CTERM, COLSTR, LDCOL)
    ----Open flow bound data file
     CALL FB_FIL(NDNAM, LDND, II, JJ, ARTYP, LDARC,
PTDWAR, LDND, NDDWAR, LDARC,
NFBAR, FBAR, LDFBAR, FBUNIT,
UNITNM_1, LDUNIT, FBFLAG, FBFIL, FILNAM(II)
NTLS, IN_FB, OU_NT, CTERM, COLSTR, LDCOL)
                                                                                                    FILNAM(IN_FB),
     -----Open a groundwater level data file
     CALL FIL_HEAD(NNODS, NDNAM, LDND, NGWND, GWND, LDGWND, GWTYPE,
GWUNIT, LDUNIT, GWFLAG, FLAG, FILNAM(IN_GW),
NTLS, IN_GW, OU_NT, 'ground-water-level',
CTERM, COLSTR, LDCOL)
   ·----Open a fixed flow file
     CALL FX_FIL(NDNAM, LDND, II, JJ, ARTYP, LDARC,
PTDWAR, LDND, NDDWAR, LDARC,
NFXAR, FXAR, LDFXAR,
FXUNIT, UNITNM_1, LDUNIT, FXFLAG,
FILNAM(IN_FX), NTLS, IN_FX, OU_NT,
CTERM, COLSTR, LDCOL)
  ------WRITE BASIC NETWORK INFORMATION
     IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
CALL PRTINF (NDNAM, NDTYP, NDSEQ, NRES, 0, LDND,
                                 LDARC, LDRES,
II, JJ, HI, LO, COST, ARTYP, PTRE, REAR,
NNODS, PTDWAR, NDDWAR,
PERD, NARCS, CONST, XF, OU_NT)
   &
     ENDIF
-----Open single nodal/arc budget list files
    CALL SNBL(NNODS, NDNAM, LDND, II, JJ, LDARC,
PTDWAR, LDND, NDDWAR, LDARC,
NSTRM, STRMAR, LDSTRM,
NSNBL, SNBLND, LDSNBL, SNBLFG, FILNAM(OU_SN
CALL SABL(NDNAM, LDND, PTDWAR, II, JJ, NDDWAR, LDARC,
NSTRM, STRMAR, LDSTRM,
NSABL, SABLND, LDSABL, SABLFG,
FILNAM(OU_SA))
                                                                                           FILNAM(OU_SN))
     DO I = 1, NARCS
                                                                          OHI(I) = HI(I)
```

ENDDO

```
*----BEGIN TO CALCULATION
          PRINT *
                           'Begin simulation'
 30
           CONTINUE
          NOTCOV = .TRUE.

NOP = NOP + 1

IF (NOP .GT. 1) THEN
                               PRINT '(A, I4)', 'Finish simulation time period:', NOP-1
          ENDIF
IF (NOP .GT. NSPS) GOTO 80
MTH = NOP + STMO - 1
MTH = MOD (MTH, NPER)
IF (MTH .EQ. 0) MTH = NPER
                      PREPARE THE TIME FOR OUTPUT
          IF (STMO .EQ. 1 .AND. NOP .EQ. 1) THEN YEAR = YEAR - 1
           IF (MTH .EQ. 1) THEN
                                                                       YEAR = YEAR + 1
           END IF
           IF (NPER .EQ. 12) THEN
                                                              CALL MONTH(2, MTH, MNTH)
                                                               WRITE(MNTH, '(14)') MTH
          ENDIF
DO I = 1, LDND
                                                                          DO J = 1, 6

NDXAR(I, J) = 0

ENDDO
          ENDDO
                      CALL SUBROUTINE NVAR TO GET THE NET INFLOW TO NODES AND CREATE THE CORESPONGING NET INFLOW ARCS.
          CALL NVAR (NNODS, NDNAM, NDTYP, NDSEQ, LDND,
NARCS, II, JJ, HI, LO, COST, ARTYP, LDARC,
MTH, IN_IFW, LAST, LDRES,
INST, RC, SKSC,
NDXAR, PERD, XF,
NIFW, IFWND, LDIFW,
PTRE, LDRES, REAR, REZN, LDREAR,
NRCND, RCND, LDRC, RCTB, LDRCTB, RCFLAG, RCFIL,
IN RC.
          IN RCND, RCND, LDRC, RCTB, LDRCTB, RC IN RC,
APRX, OU_NT,
RPOOL, LDPL, CTERM, COLSTR, LDCOL)
IF (ERR) GO TO 99
IF (FBFLAG) THEN
                                       CALL FB_ARC(LO, HI, ARTYP, LDARC, NFBAR, FBAR, LDFBAR, FBTB, LDFBTB, FBFIL, MTH, PERD, XF, IN_FB, CTERM, COLSTR, LDCOL)
          ENDIF
*-----Define rainfall arcs
          IF (RNFLAG) THEN
                                             CALL RNOF_ARC(NDTYP, NDSEQ, LDND, NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, INST, LDRES, NDXAR, LDND, NRAIN, RAINND, LDRAIN, RAINTY, NRNOF, RNOFND, LDRNOF, RNOFTB, LDRFTB,
                                            NRNOF, RNOFND, LDRNOF
A5DR, PERD,
SKSC, XF, IN_RN,
CTERM, COLSTR, LDCOL)
           ENDIF
    ------Define reservoir water surface EV arc
           IF (EVFLAG) THEN
                                             CALL RESEV_ARC(NDTYP, NDSEQ, LDND, NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, INST, LDRES, NDXAR, LDND, NEV, EVND, LDEV, EVTB, LDP, MTH, SKSC, PERD, EVFIL, XF, IN_EV,
                                             CTERM, COLSTR, LDCOL)
           ENDIF
*-----Target water demand arcs
           IF (WSFLAG) THEN
                                 CALL TWS_ARC(NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, NWSND, WSND, LDWS, WSTB, LDP, WSFIL, NDXAR, LDND, MTH, SKSC, PERD, MXCST, XF, IN_WS, CTERM, COLSTR, LDCOL)
         &
           ENDIF
       ------Define Reservoir seepage arcs
                                  CALL GW_DAT(NGWND, GWND, GWLVL, LDGWND, GWTYPE, IN_GW, CTERM, COLSTR, LDCOL)
```

```
ENDIF
         CALL RESLOS(
                             NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, NRES, PTRES, INST, RESDAT, LDRES, NGWND, GWND, GWLVL, LDGWND, GWTYPE, NDXAR, LDND, SKSC, PERD, XF)
       &
       &
    -----Calculate the overflow over weir
         CALL HYDR_OFW(NDSEQ, LDND,
                                  NDSEQ, LDND,
II, HI, LO, OHI, LDARC,
NHY, HYTPCD, HYDAT, HYOUT, LDHY,
OINST, LDRES,
PERD, CONST, XF, OU_NT)
       æ
       &
      -----Assign flows for fixed flow arcs
         IF (FXFLAG) THEN
                         CALL FX_ARC(HI, LO, COST, LDARC, NFXAR, FXAR, LDFXAR, FXUNIT, XF, PERD, IN_FX, RPOOL, LDPL, CTERM, COLSTR, LDCOL)
        ENDIF
                 Flow dependent arcs such as Channel seepage arcs
         IF (FLWARC) THEN
                                                              NITR = 0
OARCS = NARCS
DO I = 1, LDARC
OFLOW(I) = 0
                                                                       ENDDO
        ENDIF
        CONTINUE
40
         IF (FLWARC) THEN
                                                                NARCS = OARCS
                                                                  (EVFIL) THEN
I = 0
                                                                        ELSE
                                                                        I = MTH
                                                                       ENDIF
                          CALL STRM_ROUT(
NARCS, II, JJ, HI, LO, COST, FLOW, ARTYP, LDARC,
NSTRM, STRMCF, STRMAR, LDSTRM,
NSTR, STRDIR, STRDAT, LDSTR,
NGWND, GWND, GWLVL, LDGWND,
NEV, EVND, LDEV, I, EVTB, LDP,
SKSC, PERD, XF)
        ENDIF
                  SOLVE THE NETWORK BY USING THE OUT OF KILTER TECHNIQUE
        CALL KLTR(II, JJ, HI, LO, COST, FLOW, LDND, NARCS, DEBUG, KARC,
                         ÎFAULT)
        IF (IFAULT .NE. O) THEN
                                                                        STOP
        ENDIF
        IF (DEBUG) THEN
                                           IF (FLWARC .AND. NITR .LT. LDITR) THEN NITR = NITR + 1
GOTO 40
                                                                        ELSE
                                CALL OUTPUT2(NDNAM, LDND, II, JJ, HI, LO, COST, FLOW,
                               ARTYP, NARCS)

PRINT *, ' ******SOLUTION IS INFEASIBLE******

PRINT *, 'CHECK THE ARC FROM ', NDNAM(II(IABS(KARC))),

'TO ', NDNAM(JJ(IABS(KARC))), 'WITH ARC NUMBER:',
                                 ABS(KARC)
PRINT *, 'THE CURRENT TIME PERIOD IS ', NO
PRINT *, 'THE LOCAL ITERATION IS ', NITR
STOP
                  STOP ! CALL EXIT
                                                                      ENDIF
        END IF
        IF (FLWARC) THEN
                               CALL FLWCK(NNODS, LDND, PTDWAR, NDDWAR, LDARC, FLOW, OFLOW, FCRIT, NOTCOV)
                                                        IF (NOTCOV) THEN
NITR = NITR + 1
IF (NITR .LE. LDITR) THEN
GOTO 40
                                                                          ELSE
                                                                          GOTO 43
                                                                         ENDIF
                                                                       ENDIF
        ENDIF
43
        CONTINUE
```

CALCULATE STAGES OF PONDS

Appendix E. Computer Program Listing

```
CALL RESSTG(NNODS, NDTYP, NDSEQ, LDND, RC, INST, PTRE, LDRES, REAR, LDREAR, FLOW, LDARC, XF)
                   Calculate nodal budgets and save into a file
          CALL NDBUD(FLOW, LDARC, RC, OINST, INST, RESDAT, LDRES,
NNODS, NDTYP, NDSEQ, PTDWAR, LDND, NDDWAR, LDARC,
NDXAR, NODBUD, XF, OU_NT)
CALL PRIND(NNODS, NDNAM, NDTYP, NODBUD, LDND, NOP, XF, XP,
NSNBL, SNBLND, LDSNBL, SNBLFG, NDBFLG, ZEROFG, OU_ND)
                     Calculate arc budgets
         CALL ARBUD(NNODS, PTDWAR, LDND, NDDWAR, LDARC,

II, JJ, FLOW, ARCBUD, LDARC,

NSTRM, STRMAR, LDSTRM)

CALL PTARBD(II, JJ, ARCBUD, NDDWAR, LDARC,

NNODS, NDNAM, PTDWAR, LDND,

NSABL, SABLND, LDSABL,

NSNBL, SNBLND, LDSABL,

NSNBL, SNBLND, LDSNBL, SNBLFG,

NOP, XF, XP, ARBFLG, PERD, CONST, OU_AR)
                   Flow in the hydraulic structures
          IF (NHY .GT. 0) THEN
                                                                  CALL HYDR_HITE(
                                        ARCBUD, LDARC,
                                        NHY, HYTPCD, HYDAT, HYOUT, LDHY,
                                        PERD, CONST, XF)

CALL HYDR_PRN(HYTP, LDHYTP,
NHY, HYDIR, HYTPCD, HYDAT, HYOUT, LDHY, NOP,
HYBFLG, OU_HY)
         &
          ENDIF
       -----System water budget
          CALL SAVBUD(NNODS, NDNAM, NDTYP, NODBUD, PTDWAR, LDND, II, JJ, ARCBUD, NDDWAR, LDARC, NOP, NSPS, XF, XP, OU_NT, CNDBT, CARBT, CSNDBT, LDND, CSARBT, LDARC)
300
          CONTINUE
          DO I = 1, NRES
                                                                OINST(I) = INST(I)
          ENDDO
          DOI = 1, NSTRM
                                          ARC = STRMAR(I, 5)
STRMCF(I, 0) = ISGN(ARC)*FLOW(IABS(ARC))/XF
          ENDDO
          IF (NARCS .GT. ARCS) THEN
                                                            DO I = ARCS + 1, NARCS

II(I) = 0

JJ(I) = 0

HI(I) = 0

LO(I) = 0
                                                                         FLOW(I) = 0

COST(I) = 0
                                                                            ENDDO
          ENDIF
          NARCS = ARCS
          GO TO 30
CONTINUE
 80
          CONTINUE
CALL SVINFO(FILNAM, LDFIL, NHY, NSNBL, NSABL,
NDBFLG, ARBFLG, HYBFLG)
         &
          STOP
 99
          END
          SUBROUTINE GETINT(IVAR, IN, IFAULT)
          IMPLICIT
                              NONE
          INTEGER
                              IVAR, IN, IFAULT
          CHARACTER CTERM*50
          CTERM = ' '
          IFAULT = 1
READ (IN, '(a)', END = 5) CTERM
CONTINUE
 5
          IF (CTERM .NE. ' ') THEN
                                                                 BACKSPACE(IN)
READ (IN, *) IVAR
IFAULT = 0
          ENDIF
          RETURN
          END
* Name:
* Purpose: * Author:
                        Calculate the water budget for arcs.
                        Xiaodong Jian
   Date:
                        1/16/95
          SUBROUTINE ARBUD(NND, PTDWAR, LDND, DWAR, LDDWAR,
```

```
II, JJ, FLOW, ARCBUD, LDARC, NSTRM, STRMAR, LDSTRM)
            IMPLICIT
                                 NONE
                                 NONE
NND, LDND, PTDWAR(LDND, 2), LDDWAR, DWAR(LDDWAR)
LDARC, II(LDARC), JJ(LDARC), FLOW(LDARC),
ARCBUD(LDARC, 0:6)
NSTRM, LDSTRM, STRMAR(LDSTRM, 0:6)
            INTEGER
            INTEGER
            INTEGER
                                       J, N, STRM, DWND, ARC, LIM1, LIM2, ARC2
                                  İŚGŇ
            INTEGER
            LOGICAL
                                 UNSTRM
            DO 100 N = 1, NND
                                                                      LIM1 = PTDWAR(N, 1)

LIM2 = PTDWAR(N, 2)

DO 50 J = LIM1, LIM2

ARC = DWAR(J)
                             Check if the current arc is a stream arc.
                                                         UNSTRM = .TRUE.

I = 1

DO WHILE (I .LE. NSTRM .AND. UNSTRM)

IF (ARC .EQ. STRMAR(I, 1)) THEN

UNSTRM = .FALSE.

STRM = I
                                                                                      ENDIF
                                                                                       I = I + 1
ENDDO
    -----Calculate the arc water budget.
                                                                            IF (UNSTRM) THEN
IF (ARC .GT. 0) THEN
DWND = JJ(ARC)
                                                                            ELSE
ARC = -ARC
DWND = II(-ARC)
                                                                     ENDIF

ARCBUD(ARC, 0) = DWND

ARCBUD(ARC, 1) = FLOW(ARC)

ARCBUD(ARC, 2) = 0

ARCBUD(ARC, 3) = 0

ARCBUD(ARC, 4) = 0

ARCBUD(ARC, 5) = 0

ARCBUD(ARC, 6) = FLOW(ARC)

ELSE

ARC2 = STRMAR(STRM, 6)

IF (ARC2 .GT. 0) THEN
                                                                                           ENDIF
                                                ARC2 = STRMAR(STRM, 6)
    IF (ARC2 .GT. 0) THEN
    DWND = JJ(ARC2)
    ELSE IF (ARC2 .LT. 0) THEN
    DWND = II(-ARC2)
        ENDIF
    ARC = IABS(ARC)
    ARCBUD(ARC, 0) = DWND
    DO I = 1, 6
    ARC2 = STRMAR(STRM, I)
    IF (ARC2 .NE. 0) THEN
    ARCBUD(ARC, I) = ISGN(ARC2) * FLOW(IABS(ARC2))
    ELSE
                                                                            ELSE
ARCBUD(ARC, I) = 0
ENDIF
                                                                                          ENDDO
                                                                                        ENDIF
                 CONTINUE
  100 CONTINUE
            RETURN
            END
*======
                          ________
                           ptarbd
* Name:
                           print arc water budget into a file. Xiaodong Jian
* Purpose:
* Author:
                           1/16/96
                                 SUBROUTINE PTARBD(II, JJ, ARCBUD, NDDWAR, MXARC,
NNODS, NDNAM, PTDWAR, MXND,
NSABL, SABLND, LDSABL,
NSNBL, SNBLND, LDSNBL, SNBLFG,
          æ
                                             NOP, XF, XP, ARBFLG, PERD, CONST, IOUT)
            IMPLICIT
                                 NONE
                                MXARC, MXND, NNODS, NOP, XP, IOUT
II(MXARC), JJ(MXARC), ARCBUD(MXARC, 0:6)
PTDWAR(MXND, 2), NDDWAR(MXARC)
XF, PERD, CONST
NDNAM(MXND)*(*)
            INTEGER
            INTEGER
            REAL
            CHARACTER
                                 NSABL, LDSABL, SABLND(LDSABL, 3)
NSNBL, LDSNBL, SNBLND(LDSNBL, 3)
SNBLFG, ARBFLG
            INTEGER
            INTEGER
            LOGICAL
            INTEGER
                                 I, J, K, L, N, OJ, ARC, LIM1, LIM2, BUD(6) OU, NOFW, OFWID, OFW(20), NARC
            INTEGER
```

CHARACTER FMT*40, FMT2*30, OFWFMT*30

```
LOGICAL
                                OFWFLG, CN2INT, CNINT
         NARC = 0
         IF (XP .GT. 0) THEN
                                                 N
FMT = '(14, 1x, 2A12, T30, 6F10.0, F10.2)'
WRITE(FMT(26:26), '(11)') XP - 1
FMT2 = '(14, 1x, 6F10.0, F10.2)'
WRITE(FMT2(15:15), '(11)') XP - 1
OFWFMT = '(14, 1x, 20(F10.0, F10.2))'
WRITE(OFWFMT(17:17), '(11)') XP - 1
        ELSE
                                                    FMT = '(14, 1X, 2A12, T30, 6110, F10.2)'

FMT2 = '(14, 1X, 6110, F10.2)'

OFWFMT = '(14, 1X, 20(110, F10.2))'
        ENDIF
        IF (ARBFLG) THEN
                                                                          WRITE(IOUT, 900) NOP
         ENDIF
        DO 100 N = 1, NNODS
                                                                           LIM1 = PTDWAR(N, 1)
LIM2 = PTDWAR(N, 2)
                                     IF (SNBLFG .AND. CNINT(N, NSNBL, SNBLND, OFWID)) THEN

NOFW = 0

OFWFLG = .TRUE.

ELSE
                                                                                  OFWFLG = .FALSE.
ENDIF
                                                                         DO 50 K = LIM1, LIM2

ARC = NDDWAR(K)

IF (ARC .GT. 0) THEN

I = II(ARC)
                                                                                               ELSE
                                                                                         I = JJ(-ARC)
ENDIF
                                              ENDIF

J = ARCBUD(IABS(ARC), 0)

IF (J .NE. OJ) THEN

IF (K .NE. LIM1) THEN

IF (ARBFLG) THEN

NARC = NARC + 1

IF (XP .GT. 0) THEN

WRITE(IOUT, FMT) NARC, NDNAM(I), NDNAM(OJ),

(BUD(L)/XF, L=1,6), BUD(6)/XF/PERD/CONST

ELSE

WRITE(IOUT, FMT) NARC, NDNAM(I), NDNAM(OJ),

(BUD(L), L=1,6), BUD(6)/PERD/CONST

ENDIF

ENDIF
                                                                                            ENDIE
         -----Print arc budget for selected arcs
                                     IF (CN2INT(I,OJ,NSABL,SABLND(1,1),SABLND(1,2),L)) THEN OU = SABLND(L, 3)
                                                                        IF (XP .GT. 0) THEN WRITE(OU, FMT2) NOP,
                                                            (BUD(L)/XF, L=1,6), BUD(6)/XF/PERD/CONST
ELSE
      8
                                                           WRITE(OU, FMT2) NOP,
(BUD(L), L=1,6), BUD(6)/PERD/CONST
ENDIF
      8
                                                                                           ENDIF
-----Save downstream release.
                                                                                IF (OFWFLG) THEN
                                                                                NOFW = NOFW + 1
OFW(NOFW) = BUD(1)
ENDIF
                                                                                                ENDIF
                                                                                      OJ = J

DO L = 1, 6

BUD(L) = 0

ENDDO
                                                    ENDDO
ENDIF

DO L = 1, 6

BUD(L) = BUD(L) + ARCBUD(IABS(ARC), L)
ENDDO

IF (K .EQ. LIM2) THEN
IF (ARBFLG) THEN
NARC = NARC + 1
IF (XP .GT. 0) THEN
WRITE(IOUT, FMT) NARC, NDNAM(I), NDNAM(OJ),
(BUD(L)/XF, L = 1, 6), BUD(6)/XF/PERD/CONST
ELSE
WRITE(IOUT, FMT) NARC, NDNAM(I), NDNAM(OJ),
                                                     WRITE(IOUT, FMT) NARC, NDNAM(I), NDNA
(BUD(L), L = 1, 6), BUD(6)/PERD/CONST
ENDIF
                                                                                                                            NDNAM(OJ),
                                                                                                 ENDIF
        -----Print arc budget for selected arcs
```

```
IF (CN2INT(I,OJ,NSABL,SABLND(1,1),SABLND(1,2),L)) THEN

OU = SABLND(L, 3)

IF (XP .GT. 0) THEN

WRITE(OU, FMT2) NOP,

(BUD(L)/XF, L=1,6), BUD(6)/XF/PERD/CONST

ELSE

ELSE

EMPLIES (M. EMM2) NOP
                                            WRITE(OU, FMT2) NOP,
(BUD(L), L=1,6), BUD(6)/PERD/CONST
ENDIF
      æ
                                                                ENDIF
          -----Save downstream release.
                                                   IF (OFWFLG) THEN NOFW = NOFW + 1
OFW(NOFW) = BUD(1)
ENDIF
                                                               ENDIF
50
           CONTINUE
                           IF (OFWFLG) THEN
OU = SNBLND(OFWID, 3)
IF (XP .GT. 0) THEN
WRITE(OU, OFWFMT) NOP,
(OFW(L)/XF, OFW(L)/XF/PERD/CONST, L = 1, NOFW)
      &
                           (OFW(L), OFW(L)/PERD/CONST, L = 1, NOFW)

ELSE

WRITE(OU, OFWFMT) NOP,
(OFW(L), OFW(L)/PERD/CONST, L = 1, NOFW)

ENDIF
                                                            ENDIF
100
       CONTINUE
      901
900
                                                                                   Final',
                                     Outflow',
      & /,T30,'
                        Inflow
                                     storage
                                                   seepage
                                                                   ration
                                                                                storage',
                       Outflow
                                       (cubic',
        /,T30,'
                        (acre-
                                                     (acre-
                                       lacre-
                                                                   lacre-
                                                                                  (acre-',
                                   feet per',
       /,' No. From', T18,
T30,' feet)
','---', T18,
                                       feet)
                                                      feet)
                                                                     feet)
                                                                                   feet)'.
                                     second)',
          ,' --- ', T18, \---', T30,' -----'
          ________
 Name:
                  setzva
                  Get pond characteristic data of elevation, volume,, and surface area from a file.
 Purpose:
                  Xiaodong Jian
04/07/97
 Author
 Date:
      SUBROUTINE SETZVA(NRES, NNODS, NDNAM, NDTYP, LDND, FILNAM, NTLS, OU)
       INTEGER NRES, NNODS, LDND, NDTYP(LDND), NTLS, OU CHARACTER NDNAM(LDND)*(*), FILNAM*(*)
                      IU, I
ZVAMTH, SAVOPT
/ZVAWAY/ ZVAMTH
/SAVOPT/ SAVOPT
       INTEGER
       INTEGER
       COMMON
       COMMON
   -----Open a data file
      CALL IO_OPFIL(IU, 1, FILNAM,
\( \text{`Enter pond characteristics file: ')}
     -----Skip title lines
       DO I = 1, NTLS
                                                       READ (IU, *)
       ENDDO
   -----Read data index
       READ (IU, \star, ERR = 99) ZVAMTH
    ------Read corresponding data according to data index
       IF (ZVAMTH .EQ. 0) THEN
      CALL SETTAB(NRES, NNODS, NDNAM, NDTYP, LDND,
IU, OU, SAVOPT)
ELSE IF (ZVAMTH .EQ. 1) THEN
CALL SETEQS(NRES, NNODS, NDNAM, NDTYP, LDND,
                              IU, OU, SAVÕPŤ)
       ENDIF
99
       RETURN
```

```
END
  Name:
                   getzva
                   getzva
Logial function to interprete Z-V-A for given one of
Z, V, or, A for a given node.
Xiaodong Jian
04/07/97
  Purpose:
 Author:
        LOGICAL FUNCTION GETZVA(RESND, ZVAIDX, ZVA, OU)
        IMPLICIT NONE
        INTEGER RESND, ZVAIDX, OU
        REAL
                    ZVA(3)
        INTEGER ZVAMTH
        COMMON
                    /ZVAWAY/ ZVAMTH
        IF (ZVAMTH .EQ. 0) THEN
CALL GETTAB(GETZVA, RESND, ZVAIDX, ZVA, OU)
ELSE IF (ZVAMTH .EQ. 1) THEN
CALL GETEQS(GETZVA, RESND, ZVAIDX, ZVA, OU)
        ENDIF
        RETURN
        END
               * Name:
                   Settab
SUBROUTINE SETTAB(NRES, NNODS, NDNAM, NDTYP, LDND, IU, OU, SAVOPT)
        IMPLICIT
                       NONE
        INTEGER NRES, NNODS, LDND, NDTYP(LDND), IU, OU, SAVOPT CHARACTER NDNAM(LDND)*(*)
   -----Local variables
        REAL ELE, CAP, AREA, MAXV, MINV INTEGER J, K, NWND, NCOL CHARACTER NAME*30, CTERM*100
        LOGICAL
                  -Common block for Z-V-A table. This common block must be the same as the subroutine gettab.

- Pointer of reservoir characteristics table (2 x 100).

- Array of reservoir elevation-volume-area table (3 x 5000)

1 -- elevation in feet
2 -- volume in acre-feet
3 -- area in acre
     ptretb
     retb
*
                      3 -- area in acre.
        INTEGER PTRETB(2, 100)
REAL RETB(3, 5000)
COMMON /ZVADAT/ PTRETB, RETB
PTRETB(2,1) = 1
NRES = 0
NNODS = 0
        NWND = 0
        J = 0
    -----Set output file titles
        IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
                                                    WRITE(OU, 800)
 800
            FORMAT (
                  'Summary of pond elevation-volume-area relations:',
                                    Minimum
                                                                               Maximum'
                                                                              elevation',
                                                Number of elevation
                                                                           (feet)',
                                                records (feet)
       &
                       No Name
       ENDIF
  5
        CONTINUE
        READ (IU, '(A)') NAME
IF (CN ('FINISH', NAME, 1)) THEN
                                                         GOTO 90
        ENDIF
       MINV = 99999.0
MAXV = -99999.0
       -----Add a new node.
        NRES = NRES + 1
       NRES = NRES + 1
NNODS = NNODS + 1
NWND = NNODS
CALL STR_CORS(NAME, 1)
NDNAM(NWND) = NAME
NDTYP(NWND) = 1
NDTPTP(1 NWND) = NWND
        PTRETB(1, NRES) = NWND
   ------Read the characteristics table
       NCOL = 0
READ (IU, '(A)') CTERM
 15
```

```
IF (CTERM .NE. ' ') THEN
                                                                                                                                    NCOL = NCOL + 1

K = J + NCOL

BACKSPACE(IU)
                                                                                                           BACKSPACE(IU)

READ(IU, *) ELE, CAP, AREA

RETB(1,K) = ELE

RETB(2,K) = CAP

RETB(3,K) = AREA

IF (ELE .LT. MINV) MINV = ELE

IF (ELE .GT. MAXV) MAXV = ELE

GO TO 15
                    PTRETB(2, NRES+1) = PTRETB(2, NRES) + NCOL
J = J + NCOL
                     IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

WRITE (OU, 801) NRES, NAME, NCOL, MINV, MAXV

FORMAT(15, 2X, A12, 1X, 110, 2F10.2)
   801
                     ENDIF
                    GO TO 5
CONTINUE
   90
                     CLOSE(IU)
                     RETURN
                    END
                    * Name:
                                                gettab
* Purpose:
                                                 Ğet the Z-V-A table to interprete the Z-V-A for a given
                                                node.
                                                Xiaodong Jian
    Author:
                                                4/9/97
                    SUBROUTINE GETTAB(GETZVA, RESND, ZVAIDX, ZVA, OU)
                     IMPLICIT NONE
                    INTEGER RESND,
REAL ZVA(3)
LOGICAL GETZVA
                                                                               ZVAIDX, OU
           -----Local variables
                    REAL X, X1, Y1, X2, Y2, VAL, VAL1, DIF
INTEGER I, N, K, LIM
CHARACTER ZVANAM(3)*9
DATA ZVANAM/ `ELEVATION', 'VOLUME', 'AREA'/
                     -----Common block for Z-V-A table. This common block must be
                                                the same as the subroutine settab.
                    INTEGER PTRETB(2, 100)
REAL RETB(3, 5000)
CHARACTER NDNAM(300) *12
COMMON ZVADAT/ PTRETB, RETB
COMMON /NDNAME/ NDNAM
          -----Check whether there is Z-V-A for the current node
                   DO WHILE (PTRETB(1, N) .NE. RESND .AND. PTRETB(1, N) .NE. 0) N = N + 1
                    IF (PTRETB(1,N) .NE. RESND) THEN
                                                                                                                                 GETZVA = .FALSE.
GOTO 99
                   ENDIF
                   GETZVA = .TRUE.

K = PTRETB(2, N)

LIM = PTRETB(2, N+1) - 1
                   VAL = ZVA(ZVAIDX)

IF (VAL .LT. 0) VAL = 0.0

IF (RETB(ZVAIDX, K) .GT. VAL .OR. RETB(ZVAIDX, LIM) .LT. VAL) THEN
                                                G(ZVAIDX, K) .GT. VAL .OR. RETB(ZVAIDX, LIM) .LT. VAL) THEN

GETZVA = .FALSE.

PRINT '(A)', CHAR(7)

CALL STR_LEN(ZVANAM(ZVAIDX), I)

WRITE (OU, 901) ZVANAM(ZVAIDX)(1:I), VAL, NDNAM(RESND), RESND,

ZVANAM(ZVAIDX)(1:I), RETB(ZVAIDX,K),

ZVANAM(ZVAIDX)(1:I), RETB(ZVAIDX, LIM)

WRITE (*, 901) ZVANAM(ZVAIDX)(1:I), VAL, NDNAM(RESND), RESND,

ZVANAM(ZVAIDX)(1:I), RETB(ZVAIDX,K),

ZVANAM(ZVAIDX)(1:I), RETB(ZVAIDX,K),

ZVANAM(ZVAIDX)(1:I), RETB(ZVAIDX, LIM)

T('***ERROR***'
                &
                                / TRANSFORMING ', A, ' = ', F10.2, ', ' TO ITS CORRESPONDING PARAMETERS AT POND: ', A, ' WITH THE NODAL NUMBER: ', I2, ', ' THE MINIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', F10.2, ', ' THE MAXIMUM ', A, ' IN Z-V-A TABLE = ', ' TABLE = 
                              FORMAT ( '***ERROR****
  901
                                           WITH THE NODAL NUMBER: ', 12,'
'THE MINIMUM', A, 'IN Z-V-A TABLE = ', F10.2,
'THE MAXIMUM', A, 'IN Z-V-A TABLE = ', F10.2)
                  goto 99
                   CONTINUE
 10
                  VAL1 = RETB(ZVAIDX,K)
DIF = VAL1 - VAL
IF (DIF .LT. 0) THEN
                                                                                                                         IF (K .GT. LIM) THEN GETZVA = .FALSE.
```

```
GO TO 99
                                                            ENDIF
                                                          GO TO 10
        ELSE IF (DIF .EQ. 0) THEN
                                                    DO I = 1, 3

ZVA(I) = RETB(I, K)

ENDDO
                                                          GO TO 50
        ELSE
                                 X = VAL

X1 = RETB(ZVAIDX, K-1)

X2 = RETB(ZVAIDX, K)

DO I = 1, 3

Y1 = RETB(I, K-1)

Y2 = RETB(I, K)

ZVA(I) = Y1 + (Y2 - Y1) * (X - X1) / (X2 - X1)

ENDDO

CO TO 50
                                                          GO TO 50
        END IF
 99
        CONTINUE
 50
        RETURN
        END
                      __________
                   seteqs
Read the Z-V-A regression equation coefficients into the program from the file.
Xiaodong Jian
04/09/97
NDNAM. NDTYP, LDND,
  Name:
  Purpose:
  Author:
  Date:
        SUBROUTINE SETEQS(NRES, NNODS, NDNAM, NDTYP, LDND,
IU, OU, SAVOPT)
                       NONE
        INTEGER NRES, NNODS, LDND, NDTYP(LDND), IU, OU, SAVOPT CHARACTER NDNAM(LDND)*(*)
*-----Local variables
        INTEGER I, N, NWND, NEQS
CHARACTER NAME*30, CTERM*100
    -----Common block for Z-V-A equations for QNWR.

This common block must be the same as the subroutine getegs
        INTEGER ZVAPTR(2, 100)
REAL ZVAEQS(0:3, 10, 100)
COMMON /ZVAQNWR/ZVAPTR, ZVAEQS
        NRES = 0
        NNODS =
NWND = 0
J = 0
C
*
     -----Set output file titles
        IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ.
                                                        1) THEN
                                                      WRITE(OU, 800)
            //, SUMMARY OF POND ELEVATION-CAPACITY-AREA RELATIONS: ',
 800
        ENDIF
                  'Z-V-A relations is expresses as regression equation')
      -----Read pond-node name
        CONTINUE
        NAME = '
DO WHILE (NAME .EQ. ' ')
READ (IU, '(A)', END = 90) NAME
        IF (CN ('FINISH', NAME, 1)) THEN
                                                          GOTO 90
        ENDIF
    -----Add a new node.
        NRES = NRES + 1
NNODS = NNODS + 1
NWND = NNODS
CALL STR_CORS(NAME, 1)
        CALL STR_CORS(NAME, 1)
NDNAM(NWND) = NAME
NDTYP(NWND) = 1
ZVAPTR(1, NRES) = NWND
ZVAPTR(2, NRES) = 0
*-----Read the base elevations, and coefficients of regression equations.
        NEQS = 0
READ(IU, '(a)') CTERM
DO WHILE (CTERM .NE. ' ')
 15
                                                     NEQS = NEQS + 1
                                                      BACKSPACE(IU)
                             READ (IU, *) N, (ZVAEQS(I, NEQS, NRES), I = 0, 3)
```

```
READ (IU, (a)', END= 20) CTERM
        ENDDO
 20
        IF (NEQS .NE. 0) THEN
                                                 ZVAPTR(2, NRES) = NEQS
        ENDIF
        -----Read another pond node
        GOTO 5
 90
        CONTINUE
        CLOSE(IU)
        RETURN
        END
                    geteqs Get the equations to interprete the Z~V~A for a given
  Purpose:
                    node.
                    Xiaodong Jian
  Author:
                    4/9/97
        SUBROUTINE GETEQS(GETZVA, RESND, ZVAIDX, ZVA, OU)
        IMPLICIT NONE
INTEGER RESND,
REAL ZVA(3)
LOGICAL GETZVA
                                ZVAIDX, OU
    -----Local variables
        INTEGER
                      RES, NEQS, IFAULT
        INTEGER
                ---Common block for Z-V-A equations for QNWR.

This common block must be the same as the main program oponds and subroutine getzva
        INTEGER ZVAPTR(2, 100)
REAL ZVAEQS(0:3, 10, 100)
CHARACTER NDNAM(300) *12
COMMON /ZVAQNWR/ ZVAPTR, ZVAEQS
COMMON /NDNAME/ NDNAM
          -----Check whether there is Z-V-A equations for the current node
        DO WHILE (ZVAPTR(1, N) .NE. RESND .AND. ZVAPTR(1, N) .NE. 0) N = N + 1
        IF (ZVAPTR(1,N) .EQ. RESND .AND. ZVAPTR(2,N) .GT. 0) THEN
                                                    NEQS = ZVAPTR(2, N)
        ELSE
                                                     GETZVA = .FALSE.
GOTO 99
        ENDIF
      -----Get Z, V, and A
        CALL CALZVA(NEQS, ZVAEQS(0, 1, RES), ZVAIDX, ZVA, IFAULT) IF (IFAULT .NE. 0) THEN
                                                     GETZVA =
                                                                   .FALSE.
            WRITE(OU, 900)
FORMAT('***Errorr*** in transforming Z-V-A')
900
        ELSE
                                                      GETZVA = .TRUE.
        ENDIF
  99
        CONTINUE
 50
        RETURN
        END
        SUBROUTINE CALZVA(NEQS, A, ZVAIDX, ZVAOUT, IERR)
        IMPLICIT
                        NONE
                        NEQS, ZVAIDX, IERR
A(0:3, NEQS)
ZVAOUT(3)
        INTEGER
        REAL
        REAL
                        VAL, ZVA(3)
                        Z1, Z2
        INTEGER
        IF (ZVAIDX .EQ. 1) THEN ! Z --> V, AND A.

ZVA(1) = ZVAOUT(1)

CALL Z2VA(NEQS, A, ZVA, IERR)

ELSE IF (ZVAIDX .EQ. 2 .OR. ZVAIDX .EQ. 3) THEN

VAL = ZVAOUT(ZVAIDX)
                                                        Z1 = A(0, 1)
   -----find z2
                                          ZVA(1) = A(0, NEQS)
CALL Z2VA(NEQS, A, ZVA, IERR)
DO WHILE (ZVA(ZVAIDX) .LT. VAL)
ZVA(1) = ZVA(1) + 1
CALL Z2VA(NEQS, A, ZVA, IERR)
```

```
ENDDO
                                          Z2 = ZVA(1)
*-----Binary search for the elevation.
                              GOTO 100
                                               ENDIF
                                             ENDDO
      ENDIF
 100
      CONTINUE
      DO I = 1.3
                                    IF (I .NE. ZVAIDX) THEN
ZVAOUT(I) = ZVA(I)
ENDIF
      ENDDO
      RETURN
      END
      SUBROUTINE Z2VA(NEQS, A, ZVA, IERR)
IMPLICIT NONE
                  NEQS, IERR
      INTEGER
                  A(0:3, NEQS), ZVA(3)
      REAL
                  Х
      INTEGER
      IERR = 0
      DO 20 I = NEQS, 1, -1
                                 IF (ZVA(1) .GE. A(0,I)) THEN

X = ZVA(1) - A(0,I)

= (A(3, I) * X + A(2,I)) * X + A(1,I)

(3) = A(2,I) + X * (A(3,I) + A(3,I))

GOTO 99

ENDIF
                             ZVA(3)
20
      CONTINUE
      IERR = RETURN
99
Compute depth of flow using Manning's Equation Xiaodong Jian 5/9/96
* Name:
 Purpose:
Author:
* Date:
      SUBROUTINE CHDEP(ROUGH, DISCH, SLOPE, WIDTH, ML, MR, HMAX, H, CONST, TOL, ITMX, IERR)
     &
IMPLICIT
                  NONE
      REAL
                  ROUGH, DISCH, SLOPE, WIDTH, ML, MR, HMAX, H, TOL,
      INTEGER
                  IERR, ITMX
                  H1, H2, AREA, RAD, C, C1, EPS
      INTEGER
                  EPS /0.000001/
      DATA
      IERR = 0
      IF (DISCH .LT. EPS) THEN
                                            H = 0.0
                                            GOTO 999
      ENDIF
       -----Compute quotient and initialize iteration values
      C = ROUGH * DISCH / SQRT(SLOPE) / CONST
      H1 = HMAX
H = H1
      H2 = 0.0
     -----Start Iterations
      IERR = 0
DO 100 I = 1, ITMX
              compue area and hydraulic radius
                Compute approximate quotient
                                  C1 = AREA * RAD**(2.0/3.0)
              Check convergence
                               IF (ABS((C1-C)/C) .LE. TOL) THEN GOTO 999
```

```
if No.
```

```
IF (C1 .GT. C) THEN
H = H2 + (H - H2) / 2.0
ELSE
                                                       IF (H+EPS .GE. H1) THEN

IERR = 1

H1 = H1 * 2
                                                                      ELSE
                                                        H2 = H
H = H2 + (H1 - H2) / 2.0
ENDIF
 100
        CONTINUE
        IERR = RETURN
                     fil_head
  Name:
  Purpose:
                     Open a time series file and read headers for nodal data.
                     Xiaodong Jian
* Author:
        SUBROUTINE FIL_HEAD(NNODS, NDNAM, LDND, NDTND, DTND, LDDTND,
DTTYPE, UNITNM, LDUNIT, DTFLAG, DTFIL, FILNAM, NTLS,
IU, OU, CLASS, CTERM, COLSTR, LDCOL)
IMPLICIT NONE
       &
                          NNODS, LDND, NDTND, LDDTND, DTND(LDDTND, 3), DTTYPE,
        INTEGER
                          LDUNIT
        CHARACTER*(*) NDNAM(LDND), UNITNM(0:LDUNIT, 1), FILNAM, CLASS INTEGER NTLS, IU, OU
        LOGICAL
                         DTFLAG, DTFIL
        INTEGER
                          LDCOL
        CHARACTER CTERM*(*), COLSTR(LDCOL)*(*), MESS*50
        INTEGER
                          DTUNIT
                         I, J, K, L, N, ND, NREC, NNDS, SL
ERR, CN, CNINT, DUMMY, ISNUM
SAVOPT
        LOGICAL
        INTEGER
                          /SAVOPT/ SAVOPT
         COMMON
        DTTYPE = 1
        DUMMY = .FALSE.

MESS = 'ENTER DATA FILE FOR '//CLASS

DTFIL = .FALSE.
        IF (FILNAM .EQ. ' ') THEN
                                                                GOTO 999
        CALL IO_OPFIL(IU, 1, FILNAM, MESS)
       -----Skip title lines
        DO I = 1, NTLS
                                                    READ (IU, \star, END = 999)
        ENDDO
       -----Read data unit code and type
        READ (IU, '(A)', END = 999) CTERM

CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0,

READ (COLSTR(1), '(13)') DTUNIT

IF (ISNUM(COLSTR(2))) THEN

READ (COLSTR(2), '(13)') DTTYPE

ENDIF
     -----Read nodal names
        NNDS = 0
READ (IU, '(A)', END = 999) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
        DO 30 I = 2, NNDS
                                         IF (CN(COLSTR(I), 'DEFAULT', 1)) THEN
       -----Seasonal data are no longer valid.
                                                              DUMMY = .TRUE.
                                                        IF (NNDS .EQ. 2) THEN

DO J = 1, NNODS

DTND(J, 1) = J

DTND(J, 2) = DTUNIT

DTND(J, 3) = -J

ENDDO

ENDDO
                                                                      ELSE
                                                IF (NDTND .GT. 0) THEN
DO 25 J = 1, NNDS - 2
DO L = 1, NDTND + N

IF (DTND(L, 3) .EQ. J) THEN
DO K = 1, 3
DTND(J, K) = DTND(L, K)
                                                                    ENDDO
```

```
GOTO 25
                                                                                                ENDIF
                                                                                                     ENDDO
  25
                                        CONTINUE
                                                                              DO J = NNDS-2+1, NNODS
DO K = 1, 3
DTND(J,K) = 0
ENDDO
                                                                                                  ENDDO
                                                                                                       ENDIF
*----
                                                    \begin{array}{c} L = \text{ NNDS } - 2 \\ \text{DO } J = 1, \text{ NNODS} \\ \text{IF (.NOT. CNINT(J, NNDS-2, DTND(1,1), K)) THEN} \\ L = L + 1 \\ \text{DTND(L, 1)} = J \\ \text{DTND(L, 2)} = \text{DTUNIT} \\ \text{DTND(L, 3)} = -L \\ \text{ENDIF} \\ \text{ENDDO} \end{array} 
                                                                                                      ENDDO
                                                                                           ENDIF
ENDIF
NDTND = NNODS
GOTO 50
                                                                                                 ELSE
                                 ELSE

CALL NAMNUM(LDND, NDNAM, COLSTR(I), ND, 0, ERR)

IF (ERR) THEN

WRITE(*, 901) COLSTR(I), FILNAM

FORMAT( '***ERROR***NODAL NAME: ', A12,

'IN THE FILE: ',A,

/, 'NOT FOUND IN THE NETWORK CONFIGURATION.')
 901
                                                                       THE NETWORK CONFIGURATION
CALL EXIT
ENDIF

IF (NDTND .GT. 0) THEN
DO J = 1, NDTND

IF (DTND(J, 1) .EQ. ND) THEN
GOTO 20
ENDIF

\begin{array}{c}
\text{ENDDO} \\
\text{N} = \text{N} + 1 \\
\text{J} = \text{NDTND} + \text{N}
\end{array}

  20
                                 CONTINUE
                                                                                                     ELSE
                                                                                                   J = I - 1
ENDIF
                                                                                    DTND(J, 1) = ND
DTND(J, 2) = DTUNIT
DTND(J, 3) = I - 1
ENDIF
  30
             CONTINUE
             NNDS = NNDS - 1
IF (NDTND .GT. 0) THEN
                                                                                   NDTND = NDTND + N
             ELSE
                                                                                         NDTND = NNDS
             ENDIF
  50
             CONTINUE
                                   .TRUE.
             DTFLAG = .TRUE
DTFIL = .TRUE.
               -----Find the number of data records in the data file
             CALL NORECS(IU, NREC)
                                                                                   REWIND(IU)
DO I = 1, NTLS+2
READ(IU, *)
                                                                                               ENDDO
       -----Save the data file information.
             IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

CALL STR_LEN(CLASS, J)

WRITE (OU, 800) CLASS, ('=', I = 1, J + 11)
                   FORMAT (
//, 'Summary for ', A, ' (
//, '========', 100A)
  800
                                                                        ' data file:'
                                       IF (DUMMY) THEN

WRITE (OU, 805) FILNAM, UNITNM(DTUNIT, DTTYPE), NDTND, NREC

WRITE (OU, 806) (NDNAM(DTND(I, 1)), I=1,NNDS-2), 'DEFAULT'

ELSE
                                        WRITE (OU, 805) FILNAM, UNITHM(DTUNIT, DTTYPE), NNDS, NREC
                                                                                             CTERM = 
J = 0
                                          J = 0

L = 1

DO I = 1, NNDS

IF (CNINT(I, NDTND, DTND(1, 3), K)) THEN

J = J + 1

WRITE(CTERM((J-1)*10+1:J*10),'(A10)') NDNAM(DTND(K,1))

ENDIF

IF (J.EQ. 5) THEN

IF (L.EQ. 1) THEN

WRITE(OU, 807) CTERM

ELSE

WRITE(OU, 808) CTERM
                                                                                    WRITE(OU, 808) CTERM
```

```
ENDIF,
                                                                                                                                        CTERM = '
J = 0
                                                                                                                                            L = L + 1
                                                                                                                                                           ENDIF
                                                                                                                                                     ENDDO
                                                                                                                ENDDO

IF (SL(CTERM) .GT. 0 ) THEN

IF (L .EQ. 1) THEN

WRITE (OU, 807) CTERM

ELSE

WRITE (OU, 808) CTERM

ENDIF

CTERM = '

ENDIF
                                                                                                                                                      ENDIF
                                                                                                                                                 ENDIF
                     ENDIF
    999
                    RETURN
                 805
    806
  SUBROUTINE NORECS(IU, NREC)
                     IMPLICIT
                                                    NONE
                                                        IU, NREC, I
                     INTEGER
                    NREC = 0
READ (IU, *, END = 10)
NREC = NREC + 1
GOTO 5
DO I = 1, NREC + 1
    10
                                                                                                                                   BACKSPACE(IU)
                     ENDDO
                    RETURN
 * Name:
 * Purpose: Check whether a string is a float or integer number.
                    LOGICAL FUNCTION ISNUM(STR)
                    IMPLICIT NONE
CHARACTER STR*(*)
                  INTEGER I, L, ICD
LOGICAL DECFLG, SIGNFG
ISNUM = .FALSE.
DECFLG = .FALSE.
SIGNFG = .FALSE.
IF (STR .EQ. ` `) GOTO 999
L = LEN(STR)
                    DO I = 1, L
                                                      IF (STR(I:I) .NE. ' ') THEN

ICD = ICHAR(STR(I:I))

IF (ICD .GE. 48 .AND. ICD .LE. 57) THEN

CONTINUE
                                                                                                                                                                                                              ! DIGITS 0 - 9.
                                                     CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTINUE

CONTIN
                                                   ELSE IF (ICD .EQ. 46 .AND.
                 &
                                                                                                                                                   ENDIF
                                                                                                                                              ENDIF
                    ENDDO
                                             .TRUE.
                     ISNUM =
999
                    RETURN
                    LOGICAL FUNCTION INLIST(ND, NLST, LSTND, LOC)
IMPLICIT NONE
INTEGER ND, NLST, LSTND(NLST), LOC
                    INTEGER
                   INLIST = .FALSE.
DO I = 1, NLST
                                                                                                            IF (ND .EQ. LSTND(I)) THEN
                                                                                                                                    LOC = I
INLIST = .TRUE.
GOTO 999
                                                                                                                                               ENDIF
               ENDDO
RETURN
                   END
gw_dat
* Name:
                                             Read groundwater altitude or flux data.
Xiaodong Jian
* Purpose: * Author:
```

```
SUBROUTINE GW_DAT(NGWND, GWND, GWLVL, LDGWND, GWTYPE, IU,
CTERM, COLSTR, LDCOL)
       IMPLICIT
                    NONE
       INTEGER
                    NGWND, LDGWND, GWTYPE, IU
                    GWND(LDGWND, 3)
GWLVL(LDGWND)
       INTEGER
       REAL
                    LDCOL
       INTEGER
       CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
       INTEGER
                    I, J, NNDS
UC(0:2, 2)
      -----Check groundwater data type
       IF (GWTYPE .LT. 1 .OR. GWTYPE .GT. 2) THEN
PRINT *, `***ERROR*** INVALID GROUDWATER DATA TYPE: `, GWTYPE
STOP
                                                   ENDIF
  ! AC-FT/D --> AC-FT/D
! CFS --> AC-FT/D
! CFD --> AC-FT/D
       READ (IU, '(A)', END = 99) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
       DO I = 1, NGWND
                            ENDDO
 99
       RETURN
       END
               * Name:
                 reslos
                 Calculate reservoir seepage loss.
 Purpose:
Author:
                Xiaodong Jian
       SUBROUTINE RESLOS(NARC, II, JJ, LO, HI, COST, ARTYP, LDARC, NRES, PTRES, INST, RESDAT, LDRES, NGWND, GWND, GWLVL, LDGWND, GWTYPE, NDXAR, LDXAR, SKSC, PERD, XF)
       IMPLICIT
                    NONE
                    NONE
NARC, LDARC,
II(LDARC), JJ(LDARC), LO(LDARC), HI(LDARC),
COST(LDARC), ARTYP(LDARC)
NRES, LDRES, PTRES(LDRES)
INST(LDRES), RESDAT(LDRES, 0:2)
NGWND, LDGWND, GWND(LDGWND,3), GWTYPE
GWLYL(LDGWND)
       INTEGER
       INTEGER
       REAL
       INTEGER
       REAL
       INTEGER
                    LDXAR, NDXAR(LDXAR, 6)
       INTEGER
                    SKSC
                    PERD, XF
       REAL
                    INTEGER
       REAL
       LOGICAL
       CHARACTER
                    /NDNAME/ NDNAM
EPS /0.000001/
       COMMON
       DATA
       DO 100 RES = 1, NRES
                                             ND = PTRES(RES)
                           KY = RESDAT(RES, 1)
DL = RESDAT(RES, 2)
IF (KY .LT. EPS .AND. GWTYPE .EQ. 1) GOTO 100
= RESDAT(RES, 0) !BOTTOM ELEVATION OF RESERVOIR.

IF (INLIST(ND, NGWND, GWND, GWNO)) THEN

GWFLG = .TRUE.

IF (GWTYPE .EQ. 1 .AND. GWLVL(GWNO) .LT. HGW) THEN
                     HGW = RESDAT(RES, 0)
                                                     CONTINUE
                                                ELSE
HGW = GWLVL(GWNO)
                                                     ENDIF
                                                    ELSE
                                               GWFLG = .FALSE.
ENDIF
```

```
------Calculate seepage from a pond.
                         ZVA(2) = INST(RES)
                                                                                 !INITIAL POND STORAGE
                                          IF (GWFLG .AND. GWTYPE .EQ. 2) THEN
    water.
                                    RTERM = HGW * PERD

NV = NINT(HGW * PERD * XF)

IF (HGW .GT. 0.0 .AND. RTERM .GT. ZVA(2)) THEN

NV = NINT(ZVA(2) / 3.0 * XF)

ELSE

NV = NINT(HGW * PERD * XF)
                                                                   ENDIF
                                                                  ELSE
      -----Find pond water-surface elevation and area
                                              IF (GETZVA(ND, 2, ZVA, 26)) THEN

HSW = ZVA(1)

AREA = ZVA(3)
                                ENDIF

RTERM = KY * (HSW - HGW) / DL * AREA * PERD

NV = NINT(KY * (HSW - HGW) / DL * AREA * PERD * XF)
                         calculated ground-water seepage is greater than the available water in a pond. It is assumed that the maximum ground-water seepage is 1/3 of the available
    -----If calculated
                         water.
                                                  IF (RTERM .GT. ZVA(2)) THEN
NV = NINT(ZVA(2) / 3.0 * XF)
ELSE
                                                         NV = NINT(RTERM * XF)
                                                                   ENDIF
                                                                 ENDIF
    -----Create the ground-water arc
                             IF (NV .GT. 0) THEN ! LOSS WATER TO AQUIFER CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP, LDARC, ND, SKSC, NV, NV, 0, 4)

NDXAR(ND, 4) = NARC

ELSE IF (NV .LT. 0) THEN! GAIN WATER FROM AQUIFER. CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP, LDARC, SKSC, ND, -NV, -NV, 0, -4)

NDXAR(ND, 4) = -NARC ENDIF
       &
       &
 100 CONTINUE
        RETURN
KLTR
  Name:
                     Out-of-kilter algorithm to find the optimal flow in a net-
  Purpose:
                     work.
SUBROUTINE KLTR (I, J, HI, LO, COST, FLOW, NNODS, NARCS, DEBUG, KARC, IFAULT)
         IMPLICIT
                         NONE
                         NARCS, NNODS, I(NARCS), J(NARCS), KARC, IFAULT
HI(NARCS), LO(NARCS), COST(NARCS), FLOW(NARCS)
        INTEGER
INTEGER
                         DEBUG
         INTEGER
                         MXNODS
                         MANODS = 500)
PI(MXNODS), NA(MXNODS), NB(MXNODS)
A, AOK, COK, C, DEL, E, EPS, SRC, SNK
         PARAMETER
         INTEGER
         INTEGER
         INTEGER
                         M, K, INF, IA, JA, N, LAB, CCOK, NI, NJ
        KARC = 0
IFAULT = 0
         DEBUG = .FALSE.
             -----Check nodal numbers which cannot be negative, zero, or
                      greater than MXNODS.
                 IF (I(K) .LE. 0 .OR. J(K) .LE. 0) THEN
PRINT *, CHAR(7)
WRITE(*, 805) I(K), J(K)
FORMAT('**ERROR** NODAL NUMBER CANNOT BE NEGATIVE OR LESS',
'THAN ZERO.'
'. 'NODAL NUMBER' .--
        DO K = 1, NARCS
                              'NODAL NUMBERS ARE '
                                                           ', I4,',', I4)
STOP !CALL EXIT
                 ENDIF

IF (I(K) .GT. MXNODS .OR. J(K) .GT. MXNODS) THEN

PRINT *, CHAR(7)

WRITE(*, 806) MXNODS, I(K), J(K)

FORMAT('**ERROR** NODAL NUMBER CANNOT BE GREATER THAN', I4,
 806
```

```
'NODAL NUMBERS ARE ', I4,',', I4)
STOP !CALL EXIT
                                                                          ENDIF
         ENDDO
         DO 1 A = 1, NARCS
                                                                      FLOW(A) = 0
         CONTINUE
         DO 2 M = 0, NNODS
                                                                      PI (M) = 0
         CONTINUE
         DO 3 K = 0, 100
                                                                      NA(K) = 0
3
         CONTINUE
         DO 4 A = 1, NARCS
                           IF (LO (A) .GT. HI (A)) THEN

IFAULT = 1

PRINT '(a, i5)', '**** ERROR *** Lower bound is higher than'

// ' the upper bound for arc: ', A

PRINT '(a, i10)', ' The lower bound is ', LO(A)

PRINT '(a, i10)', ' The upper bound is ', HI(A)

END IF
4
         CONTINUE
         IF (IFAULT .NE. 0) THEN
                                                                         RETURN
         ENDIF
INF = 999999
AOK = 0
         CONTINUE
10
         DO 20 A = 1, NARCS
                           IA = I(A)
JA = J(A)
C = COST(A) + PI(IA) - PI(JA)
IF ((FLOW(A) .LT. LO(A)) .OR. (C .LT. 0 .AND. FLOW(A) .LT.
                          HI(A))) THEN
       æ
                                                                        SRC = J(A)
SNK = I(A)
E = +1
                       GO TO 30

ELSE IF ((FLOW(A) .GT. HI(A)) .OR. (C .GT. 0 .AND. FLOW(A) .GT. LO(A))) THEN
       ۶
                                                                        SRC = I(A)
SNK = J(A)
E = -1
GO TO 30
                                                                          END IF
20
         CONTINUE
         GO TO 100
IF ((A .EQ. AOK) .AND. (NA(SRC) .NE. 0)) GO TO 25
AOK_= A
30
         DO 5 N = 1, NNODS
                                                                       NA(N) = 0
                                                                       NB(N) = 0
5
         CONTINUE
        NA(SRC) = IABS(SNK) * E
NB(SRC) = IABS(AOK) * E
COK = C
LAB = 0
25
40
         DO 35 A = 1, NARCS
        IE THE CANDIDATE ARC FOR THE TREE

IF ((NA(IA) .EQ. 0 .AND. NA(JA) .EQ. 0) .OR. (NA(IA) .NE. 0
.AND. NA(JA) .NE. 0)) GO TO 35

C = COST(A) + PI(IA) - PI(JA)

IF (NA(IA) .NE. 0) THEN

IF (FLOW(A) .GE. HI(A). OR.

(FLOW(A) .GE. LO(A) .AND. C .GT. 0)) GO TO 35

NA(JA) = I(A)

NB(JA) = A

ELSE IF (NA(IA) .EQ. 0) THEN

IF (FLOW(A) .LE. LO(A) .OR.

(FLOW(A) .LE. HI(A) .AND. C .LT. 0)) GO TO 35

IA = I(A)

NA(IA) = -J(A)

NB(IA) = -A

END IF
       ۶
       &
                                                                        END IF
LAB = 1
                                                     IF (NA(SNK) .NE. 0) GO TO 50
        CONTINUE
        IF (LAB .NE. 0) GO TO 40
DEL = INF
DO 45 A = 1, NARCS
                         IF (NA(JA) .EQ. 0 .AND. FLOW(A) .LT. HI(A)) DEL = MIN0(DEL,C) IF (NA(JA) .NE. 0 .AND. FLOW(A) .GT. LO(A)) DEL = MIN0(DEL,-C)
         CONTINUE
45
         CCOK = COK
         IF (DEL .EQ. INF .AND. (FLOW(AOK) .EQ. HI(AOK) .OR. FLOW(AOK) .EQ.
```

```
LO(AOK))) DEL = ABS(CCOK)
IF (DEL .EQ. INF) THEN
                                                                          DEBUG = .TRUE.
KARC = AOK * E
GO TO 99
           END IF
DO 6 N = 1, NNODS
                                                    IF (NA(N) .EQ. 0) PI(N) = PI(N) + DEL
           CONTINUE
           GO TO 10
EPS = INF
NI = SRC
  50
           NJ = IABS(NA(NI))
  60
           A = IABS(NB(NI))

C = COST(A) + PI(NI) - FI

IF (NB(NI) .GT. 0) THEN
                                                    - PI(NJ)
                                              IF (FLOW(A) .LT. LO(A)) THEN

EPS = MINO(EPS, LO(A) - FLOW(A))

END IF

IF (C .LE. 0 .AND. FLOW(A) .LT. HI(A)) THEN

EPS = MINO(EPS, HI(A) - FLOW(A))

END IF
           ELSE IF (NB(NI) .LT. 0) THEN
                                              IF (FLOW(A) .GT. HI(A)) THEN

EPS = MINO(EPS, FLOW(A) - HI(A))

END IF

IF (C .GE. 0 .AND. FLOW(A) .GT. LO(A)) THEN

EPS = MINO(EPS, FLOW(A) - LO(A))

END IF
           END IF
          END IF
NI = NJ
IF (NI .NE. SRC) GO TO 60
NJ = IABS (NA(NI))
A = IABS(NB(NI))
FLOW(A) = FLOW(A) + ISIGN(EPS, NB(NI))
NI = NJ
IF (NI .NE. SRC) GO TO 70
AOK = 0
GO TO 10
CONTINUE
 70
           CONTINUE
          IF (.NOT. DEBUG) GO TO 90 RETURN
  100
 ٩n
 800
           FORMAT ('SOLUTION INFEASIBLE')
* Name:
                          PRTINE
                          Print the basic network information. Xiaodong Jian
  Purpose:
Author:
          SUBROUTINE PRTINF (NDNAM, NDTYP, NDSEQ, NRES, TYPE, MXND, MXARC, MXR, II, JJ, HI, LO, COST, ARTYP, PTRE, REAR, NNODS, PTDWAR, NDDWAR, PERD, NARCS, C, XF, IOUT1)
                             NONE
MXARC, MXR, MXND
II(MXARC), JJ(MXARC), HI(MXARC), LO(MXARC), COST(MXARC),
ARTYP(MXARC), PTRE(MXR), REAR(MXR),
PTDWAR(MXND, 2), NDDWAR(MXARC)
NNODS, NARCS, IOUT1
C, XF, PERD, X
NDNAM(MXND)*(*)
NDTYP(MXND), NDSEQ(MXND)
NRES, TYPE, N, I, J, RES, LIM1, LIM2, L
ND, OND
ARC, ZONE
TYP*4
10 NCST, UCST
           IMPLICIT
           INTEGER
           INTEGER
           INTEGER
           REAL
           CHARACTER
           INTEGER
INTEGER
           INTEGER
           CHARACTER
           CHARACTER*10 NCST, UCST, LCST, ONCST
           X = PERD * C * XF
IF (TYPE .EQ. 0 .OR. TYPE .EQ. 1) THEN
                 WRITE THE NODE NAME AND TYPE
                                                                       WRITE (IOUT1,21)
 21
                              Node name and type of basic network
         &
                                10X,
                                                   Node
                                                                 Node
         &
         &
*
                                10X,
                                               number
                                                                 name
                                                                                        type',
                                10X
                            DO 2 N = 1, NNODS

IF (NDTYP(N) .EQ. 1) THEN

WRITE (IOUT1, 23) N, NDNAM(N), 'POND'

FORMAT (10X, 17, 3X, A12, A)
 23
                                                                                      ELSE
                                                       WRITE (IOUT1,23) N, NDNAM(N), 'GENERAL'
END IF
                 CONTINUE
           END IF
           IF (TYPE .EQ. 0 .OR. TYPE .EQ. 2) THEN
                WRITE THE ARCS AND BOUNDS OF A NETWORK
```

```
WRITE (IOUT1, 27)
              FORMAT (
//. 'Basic network',
 27
                       T45, 'Flow boundary',
T45, 'Lower Hopes',
T45, 'Cub'
                   /, T45,
/, T45,
/, T45,
/, T45,
/, 10X,
                                (CUDIC
From- To-,
feet per feet per
node',
                                                           (cubic ',
                    T45,
                                                                             Penalty
                                                       second) co.
                                 node second)
                                                                          coefficient
                                                                                                       Type',
                    /, 10X,
                   DO 3 J = 1, NARCS

WRITE (IOUT1, 29) J, NDNAM(II(J)), NDNAM(JJ(J)),

LO(J)/X, HI(J)/X, COST(J), ARTYP(J)

FORMAT (10X, I3, 2X, T16, A, T28, A, T45, 2F10.2, I15, I10)
 29
         END IF
          IF (TYPE .EQ. 0 .OR. TYPE .EQ. 3) THEN
              WRITE THE PENALTY COEFFICIENTS OF RESERVOIR ZONES
                                                              WRITE (IOUT1, 31)
 31
              FORMAT (
                      'Pond-zoning penalty coefficients'
                       Find the maximum number of zones of a pond
                                                        J = 0
DO 36 RES = 1, NRES
L = PTRE(RES+1) - PTRE(RES)
IF (L .GT. J) J = L
 36
              CONTINUE
              CONTINUE

WRITE (IOUT1, 940) 'Name', ('Zone ', I, I = 1, J)

FORMAT(10X, A, T31, 10(4X, A4, I2))

WRITE (IOUT1, 942) ('-----', I = 1, J+1)

FORMAT(10X, A4, T31, 10(4X, A6))

DO 39 RES = 1, NRES

DO 4 N = 1, NNODS

IF (NDTYP(N) .EQ. 1 .AND. NDSEQ(N) .EQ. RES) GO TO 33
 940
 942
                    CONTINUE
 4
33
                   LIM1 = PTRE(RES)

LIM2 = PTRE(RES+1) - 1

WRITE (IOUT1, 945) NDNAM(N),

(COST (IABS (REAR(L))), L= LIM1, LIM2)

FORMAT (10X, A, T31, 4110/)

VINUE
 945
 39
              WRITE OUT THE PENALTY COEFFICIENTS OF CHANNELS
                                                             WRITE (IOUT1, 950)
 950
              Upper',
                                                                                   flow'.
        &
&
                                                             DO 49 N = 1, NNODS '
LIM1 = PTDWAR(N, 1)
LIM2 = PTDWAR(N, 2)
                                                                     OND = 0
ONCST = ' '
NCST = ' '
LCST = ' '
                                                                      UCST = ' '
                                                    DO I = LIM1, LIM2
ARC = NDDWAR(I)
WRITE(TYP, '(I4)') ARTYP
                                                                        '(I4)') ARTYP(ABS(ARC))
*----downstream node
                                                           IF (TYP(3:3) .EQ. '1') THEN
IF (ARC .GT. 0) THEN
ND = JJ(ARC+1)
                                                                   ELSE
ND = II(-ARC+1)
ENDIF
                                                                             ELSE
                                                            IF (ARC .GT. 0) THEN
ND = JJ(ARC)
ELSE
                                                                     ND = II(-ARC)
ENDIF
                                                                             ENDIF
```

```
-----flow zone
                                      READ(TYP(4:4), '(I1)') ZONE

IF (ZONE .EQ. 0) THEN

WRITE(NCST, '(I10)') COST(ARC)

IF (I .EQ. LIM1) ONCST = NCST

ELSE IF (ARC .GT. 0) THEN

WRITE(UCST, '(I10)') COST(ARC)

ELSE IF (ARC .LT. 0) THEN

WRITE(LCST, '(I10)') COST(-ARC)

ENDIF

IF (I .EQ. LIM1) OND = ND

IF (ND .NE. OND) THEN

WRITE (IOUT1, 43) NDNAM(N), NDNAM(OND),

ONCST, LCST, UCST

FORMAT (10X, 2A12, T35, 3A10)

ONCST = NCST

LCST = ' '

UCST = ' '

UCST = ' '

ENDIF
   43
                                                                                                    ENDIF
                                                                                                 ENDDO
                                                             WRITE (IOUT1, 43) NDNAM(N), NDNAM(ND), ONCST, LCST, UCST
                   CONTINUE
   49
             END IF
             RETURN
             END
                               PRTTL
 * Purpose:
                              Print output titles for hydrographs.
             SUBROUTINE PRTTL (NDNAM, NDTYP, NDSEQ, SYSNAM, STMH, STYR,
NNODS, NRES, INST, RESNAM,
IOUT1, IOUT2, MXND, MXR, PRTFLW)
           8
             IMPLICIT
             IMPERENT NONE
INTEGER MXND, MXR, NNODS, NRES, IOUT1, IOUT2
CHARACTER NDNAM(MXND)*(*)
INTEGER NDTYP(MXND), NDSEQ(MXND)
CHARACTER*(*) STMH, STYR, SYSNAM * 40
             INTEGER I, J
CHARACTER RESNAM(MXR)*(*)
             REAL
LOGICAL
                                     INST(MXR)
                                     PRTFLW
             IF (.NOT. PRTFLW) THEN
                                                   WRITE (IOUT1, 1001) SYSNAM, STMH, STYR WRITE (IOUT1, 1002) (NDNAM(J), J = 1, NNODS) WRITE (IOUT1, *)
             ENDIF
             DO 11 I = 1, NRES
                                               DO 9 J = 1, NNODS

IF ((NDTYP(J) .EQ. 1) .AND. (NDSEQ(J) .EQ. I)) THEN RESNAM(I) = NDNAM(J)

END IF
            CONTINUE
CONTINUE
CONTINUE
IF (.NOT. PRTFLW) THEN
WRITE (IOUT2, 1011) SYSNAM, STMH, STYR
WRITE (IOUT2, 1012) (RESNAM(J), J = 1, NRES)
WRITE (IOUT2, 1013) 'TIME', ('INFLOW VC

WRITE (IOUT2, 1013) 'STEP', ('(A-FT) (1)
S

1910, (NINT(INST(I)), I = 1, NRES)
9
11
                                                                                                                 VOLUME
                                                                                                                                    OUTFLOW'.
                                                                                                                 (A-FT)
                                                                                                                                    (A-FT) ',
             WRITE (IOUT2, 19)0,(NINT(INST(I)),
FORMAT (/, I3, 2X, 5(10X, I10,10X))
  19
             ENDIF
  RETURN
1001 FORMAT (//, 20X, 'DOWNSTREAM FLOW FROM EACH NODE IN ', A40, /,
& 20X, '(FROM ', A4, A5, ')', /,
& 20X, '(UNIT: ACRE-FEET)', //)
1002 FORMAT (1X, 'TIME', 3X, 15(1X, A9))
1011 FORMAT (///, 20X, 'RESERVOIR OPERATIONS IN ', A40, /,
& 20X, 'FROM ', A4, A5 //)
1012 FORMAT (5X, 5(12X, A, 6X))
1013 FORMAT (15A)
END
             RETURN
* Name:
                              arcflw
                             print the downstream flow from a node for current arc.
            SUBROUTINE ARCFLW(ARC, FLOW, II, JJ, MXARC, NDNAM, MXND,IOUT, FLW, NOP, OJ, FLW1, FLWTL, LAST)
             IMPLICIT
                                    ARC, MXARC, MXND, IOUT, NOP
FLOW(MXARC), II(MXARC), JJ(MXARC)
             INTEGER
             INTEGER
                                    FLW
ARC1, OJ, FLW1
NDNAM(MXND)*(*)
             INTEGER
             CHARACTER
             LOGICAL
                                     FLWTL, LAST
                                    FN, TN, K
```

INTEGER

```
IF (FLWTL) THEN
                                               WRITE(IOUT, 950) NOP
           FORMAT (
 950
             /,20X,
/,20X,
                      'CHANNEL FLOW FOR TIME STEP: ', 13,
            //
//10X, 'FLOW', T65,'TOTAL'
//10X, 'FROM-NODE', T28, 'TO-NODE',
T50, '(A-FT)',T65,'FLOW',
//10X, '----', T28, '----',
T50,'----', T65,'----',
      8
                                                  FLWTL' = . FALSE.
        ENDIF
       IF (ARC .GT. 0) THEN
                                                    K = 1
FN = II(ARC)
TN = JJ(ARC)
       ELSE
                                                    K = -1
ARC = -ARC
FN = JJ(ARC)
TN = II(ARC)
       ENDIF
       IF (TN .NE. OJ) THEN
                                                OJ = TN
FLW1 = K*FLOW(ARC)
       ELSE
                                           FLW1 = FLW1 + K*FLOW(ARC)
        IF (.NOT. LAST) THEN
                  ARC1 = ARC + 1

IF ( (FN .EQ. II(ARC1) .AND. TN .EQ. JJ(ARC1)) .OR.

(FN .EQ. JJ(ARC1) .AND. TN .EQ. II(ARC1)) ) GOTO 99
       ENDIF
       WRITE(IOUT, 900) NDNAM(FN), NDNAM(TN), FLW1, INT(FLW) FORMAT(10X, A12, 5X, A12, 5X, I10, 5X, I10)
 900
        RETURN
       END
OUTPUT
* Name:
                 Print the arc flow status.
  Purpose:
       SUBROUTINE OUTPUT (M, N, HI, LO, COST, FLOW, NARCS)
       IMPLICIT NONE
                      NARCS, M(NARCS), N(NARCS), COST(NARCS), HI(NARCS), LO(NARCS), FLOW(NARCS)
       INTEGER
       INTEGER
      INTEGER I
WRITE (*, '(8X, A/)') 'NETWORK STATUS AND MINIMUM COST FLOW'
WRITE (*, 905)
FORMAT (3X, 'ARC', 5X, 'I', 5X, 'J', 6X, 'COST', 5X, 'L.BND', 5X,

DO 7 I = 1, NARCS
WRITE(*, 910) I, M(I), N(I), COST(I), LO(I), HI(I), FLOW(I)
        CONTINUE
 910
       FORMAT (1X, I5, 216, 4110)
       RETURN
       END
       SUBROUTINE OUTPUT2 (NDNAM, LDND, M, N, HI, LO, COST, FLOW, ARTYP, NARCS)
       IMPLICIT
       INTEGER LDND, NARCS, M(NARCS), N(NARCS), COST(NARCS), HI(NARCS), LO(NARCS), ARTYP(NARCS), FLOW(NARCS) CHARACTER NDNAM(LDND)*(*)
       INTEGER
      CONTINUE
 910 FORMAT(1X, 215, 1X, 2A12, 4110)
       RETURN
       END
               FLWCK
Check flow convergence.
* Purpose:
SUBROUTINE FLWCK(NNODS, MXND,
                             PTDWAR, NDDWAR, MXARC,
FLOW, OFLOW, FCRIT, NOTCOV)
       IMPLICIT
                      NONE
                      NONE
NNODS, MXND, MXARC
PTDWAR(MXND, 2), NDDWAR(MXARC)
FLOW(MXARC)
OFLOW(MXARC), FCRIT
        INTEGER
       INTEGER
       INTEGER
       INTEGER
       LOGICAL
                      NOTCOV
       INTEGER
                      I, N, LIM1, LIM2, ARC
```

```
Check convergence
        NOTCOV = .FALSE.
DO 50 N = 1, NNODS
                                 LIM1 = PTDWAR(N, 1)

LIM2 = PTDWAR(N, 2)

DO I = LIM1, LIM2

ARC = IABS (NDDWAR(I))

IF (ABS(FLOW(ARC)) - OFLOW(ARC)) .LT. FCRIT) THEN

CONTINUE
                                                                 ELSE
                                                           NOTCOV = .TRUE.
ENDIF
                                                    OFLOW(ARC) = FLOW(ARC)
                                                              ENDDO
        CONTINUE
 50
        RETURN
                                        CTFLWB
* Name:
                    Adjust the lower flow bound for control arcs.
  Purpose:
Author:
                    Xiaodong Jian
11/27/95
        SUBROUTINE CTFLWB(ARC, CTAR, NCTAR, CTARFW, LDCTAR, LO, LDARC, DLO, CTRFLW)
                        LDCTAR, LDARC, ARC, CTAR
NCTAR, CTARFW(LDCTAR, 3), LO(LDARC), DLO, DFB
CTRFLW
        TMPLTCTT
        INTEGER
        LOGICAL
        INTEGER
                        T. A
        CTRFLW = .FALSE.
DO I = 1, NCTAR
                    A = CTARFW(I, 1)

DFB = CTARFW(I, 3) - CTARFW(I, 2)

IF ( (DFB .LT. DLO .AND. ARC .EQ. 0) .OR.

(DFB .LT. DLO .AND. A .NE. CTAR) ) THEN

CONTINUE
                                                               ELSE
                                   ELSE

CTAR = A

CTRFLW = .TRUE.

A = CTARFW(I, 1)

IF (ARC .EQ. 0) THEN

CTARFW(I, 2) = LO(A)

LO(A) = INT(0.5 * (CTARFW(I, 2) + CTARFW(I, 3)))

ELSE
                                                                 ELSE
                                                        CTARFW(I,3) = LO(A)

5 * (CTARFW(I, 2) + CTARFW(I,3)))
ENDIF
GOTO 99
ENDIF
                                    LO(A) = INT(0.5)
        ENDDO
CONTINUE
 99
        END
* Name:
                    locflw
                    Open a local inflow file.
        SUBROUTINE LOCFLW(NND, NDNAM, LDND, NIFW, IFWND, LDIFW, IFWCD, FILNAM, IU, OU, CTERM, COLSTR, LDCOL)
        IMPLICIT
        INTEGER NND, LDND, NIFW, LDIFW, IFWND(LDIFW), IFWCD, IU, OU CHARACTER NDNAM(LDND)*(*), FILNAM*(*)
        INTEGER
                        LDCOL
                        CTERM*(*),
I, ND, NREC
        CHARACTER
                                       COLSTR(LDCOL)*(*)
        INTEGER
                        ERR
        LOGICAL
                        UNITNM(0:2)*7
UNITNM/'ACRE-FT', 'FT^3/S', 'FT^3/D'/
        CHARACTER
        CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER LOCAL NET INFLOW FILE: ')
               Skip title lines
        NIFW = 0
        DO I = 1, 2
                                                 READ (IU, \star, END = 999)
        ENDDO
               Read flow unit code
        READ (IU, *) IFWCD
               Read the nodal name with local net inflow
        READ (IU, '(A)', END = 999) CTERM
CALL STR_DIVD(CTERM, NIFW, COLSTR, LDCOL, 0, ',')
        DO I = 2, NIFW
                                CALL NAMNUM(NND, NDNAM, COLSTR(I), ND, 0, ERR)
```

```
IF (ERR) THEN

WRITE(*, 901) COLSTR(1), FILNAM

FORMAT( '***ERROR***NODAL NAME: ', A12, ' IN THE FILE: ',A,

/, ' NOT FOUND IN THE NETWORK CONFIGURATION.')

STOP !CALL EXIT
 901
                                                                         ELSE
                                                                   IFWND(I-1) = ND
                                                                        ENDIF
          ENDDO
         NIFW = NIFW - 1
          CALL NORECS(IU, NREC)
WRITE (OU, 800) FILNAM, UNITNM(IFWCD), NIFW,
NREC, (NDNAM(IFWND(I)), I = 1, NIFW)
         FORMAT (
 800
                   /, 'LOCAL INCREMENTAL INFLOWS:'
                  // 20X, ' FILE NAME: ', A
// 20X, ' FILW UNITS: ', A
// 20X, 'NUMBER OF NODES: ', 14,
// 20X, 'NUMBER OF RECORD: ', 14,
// 20X, 'LIST OF NODES: ', 4A10, 10(/, 36X, 4A10))
         RETURN
\underset{\circ}{\mathsf{opmdf}}
* Name:
                       Open master data file.
   Purpose:
          SUBROUTINE OPMDF(FILNAM, LDFIL, CTERM, COLSTR, LDCOL)
          IMPLICIT NONE
                            LDFIL, LDCOL
          CHARACTER FILNAM(0:LDFIL)*(*), CTERM*(*), COLSTR(LDCOL)*(*)
          INTEGER CD, L, N, IU
CHARACTER FILNM*30
          LOGICAL
                            CN, EXIST
         FILNM = ' '
DO N = 1, LDFIL
                                                                FILNAM(N) = ' '
          ENDDO
*----Open master data file
         IF (EXIST('OPONDS.CTR')) THEN
                OPEN(10, FILE = 'OPONDS.CTR', STATUS = 'OLD')
                      READ (10, '(A)') FILNM
                      CLOSE(10, STATUS = 'delete')
         CALL IO_RDSTR('Enter master file:', FILNM)
CALL IO_OPFIL(IU, 1, FILNM, 'ENTER MASTER FILE: ')
OPEN(11, FILE = 'OPONDS.CTR', STATUS = 'UNKNOWN')
WRITE(11, '(A)') FILNM
CLOSE(11)
          CONTINUE
 5
          READ (IU, '(A)', END = 99) CTERM L = L + 1
              (CTERM .EQ. ' ') GOTO 5
          CALL STR_DIVD(CTERM, N, COLSTR, LDCOL, 0, ',')
READ (COLSTR(1), '(12)', ERR = 5) CD
IF (CD .LT. 0 .OR. CD .GT. LDFIL) THEN
              PRINT *, CHAR(7)

PRINT *, CHAR(7)

WRITE(*, 801) CD, FILNM

FORMAT('***ERROR***INVALID FILE CODE: ', I2,

' IN THE FILE: ', A)

DIF
 801
         ENDIF
IF (CN(COLSTR(2), ':', 1)) GOTO 5
FILNAM(CD) = COLSTR(2)
IF (.NOT. EXIST(FILNAM(CD)) .AND. CD .LE. 20) THEN
PRINT *, CHAR(7)

CALL STR_LEN(FILNAM(CD), N)
WRITE(*, 802) FILNAM(CD)(1:N), CD, L, FILNAM
FORMAT('***ERROR***FILE: ', A, ' WITH FILE CODE ', I2,
', ' DOES NOT EXIST. CHECK RECORDS IN THE LINE ', I2,
' IN THE FILE: ', A)

STOP !CALL EXIT
          ENDIF
 802
                                                               STOP !CALL EXIT
         ENDIF
          GOTO 5
         CLOSE (IU)
RETURN
 99
* Name:
                      arcval
          ose: Create an arc and assign values.
  Purpose:
         SUBROUTINE ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, MXARC, I, J, L, U, C, TYP)
          IMPLICIT
                            NONE
                            NARCS, MXARC
```

```
II(MXARC), JJ(MXARC), LO(MXARC), HI(MXARC),
COST(MXARC), ARTYP(MXARC)
I, J, L, U, C, TYP
       INTEGER
       INTEGER
       NARCS = NARCS + 1
       MARCS - MARCS + I

II(NARCS) = I

JJ(NARCS) = J

LO(NARCS) = L

HI(NARCS) = U

COST(NARCS) = C
       ARTYP(NARCS) = TYP
       RETURN
       END
              ----
* Name:
                  Month
                  TRANSFORM THE MONTH WITH NUMBER OR CHAR.
       SUBROUTINE MONTH (TY, NUM, CHA)
        IMPLICIT
                   NONE
       TMPDICIT NONE
CHARACTER * 4, MOTH(12), CHA
INTEGER TY, NUM, I
DATA MOTH / 'JAN.', 'FEB.', 'MAR.', 'APR.', 'MAY', 'JUN.',

'JUL.', 'AUG.', 'SEP.', 'OCT.', 'NOV.', 'DEC.'/
       IF (TY .EQ. 1) THEN
                                             DO 1 I = 1, 12
IF (CHA .EQ. MOTH(I)) THEN
                                                           NUM = I
GO TO 10
                                                           END IF
       CONTINUE ELSE IF (TY .EQ. 2) THEN
1
                                                   CHA = MOTH(NUM)
                       WRITE (*, *) ' ***MONTH TRANSFORM IS FAILED IN TYPE' , TY
       END IF
       CONTINUE
       RETURN
       END
       SUBROUTINE PNCK(PN, IU, FLAG, CTERM, COLSTR, LDCOL)
       IMPLICIT
INTEGER
                      NONE
PN, LDCOL, IU
FLAG
       CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
INTEGER N
       LOGICAL
       FLAG = .TRUE.
       DO WHILE (CTERM .EQ. '
                                      R\acute{E}AD (IU, '(A)', END = 999) CTERM
       ENDDO
CALL STR_DIVD(CTERM, N, COLSTR, LDCOL, 0, ',')
READ (COLSTR(2), '(12)') N
IF (CN(COLSTR(1), 'PART', 1) .AND. N .EQ. PN) THEN
FLAG = .FALSE.
       ELSE
                           .AND. N .GT. PN)THEN
                                                  GOTO 999
ENDIF
PRINT *, CHAR(7)
WRITE(*, 801) PN
PART ', I1,
           FORMAT( '***ERROR***ERROR IN PART
' OF NETWORK DATA FILE')
801
                                             CALL STR_LEN(CTERM, N)

*, 'RECORD = ', CTERM(1:N)

STOP !CALL EXIT
                                      PRINT *,
       ENDIF
999
       RETURN
       END
       INTEGER ISEED, NOIX, IX(NOIX), LOC
       INTEGER
       CNINT = .FALSE.
DO I = 1, NOIX
                                                     ED .EQ. IX(I)) THEN
CNINT = .TRUE.
LOC = I
                                           IF (ISEED
                                                          GOTO 99
                                                         ENDIF
       ENDDO
99
       RETURN
       LOGICAL FUNCTION CN2INT(ISD1, ISD2, NOIX, IX1, IX2, LOC)
       INTEGER ISD1, ISD2, NOIX, IX1(NOIX), IX2(NOIX), LOC
```

```
INTEGER
                     Ι
        CN2INT = .FALSE.
       CN2INT - .FABS.

I = 1

DO WHILE (I .LE. NOIX .AND. .NOT. CN2INT)

IF (ISD1 .EQ. IX1(I) .AND. ISD2 .EQ. IX2(I)) THEN

CN2INT = .TRUE.

LOC = I
                                                            ENDIF
        ENDDO
 99
        RETURN
        END
                                    _____
* Name:
                   fdwnd
                   Find DownStream Node.
  Purpose:
        SUBROUTINE FDWND(ARC, II, JJ, LDARC, NSTRM, STRMAR, LDSTRM, DWND)
        IMPLICIT
                       NONE
                       ARC, LDARC, II(LDARC), JJ(LDARC)
LDSTRM, NSTRM, STRMAR(LDSTRM,0:6)
        INTEGER
        INTEGER
                       DWND
        INTEGER
        LOGICAL
                       CNINT
        IF (CNINT(ARC, NSTRM, STRMAR(1,1), I)) THEN
ARC2 = STRMAR(I, 6)
        ELSE
                                                        ARC2 = ARC
        ENDIF
        IF (ARC2 .GT. 0) THEN
                                                     DWND = JJ(ARC2)
        ELSE
                                                    DWND = II(-ARC2)
        ENDIF
        RETURN
* Name:
                   dattb
* Purpose:
                   Read seasonal data matrix.
                   Xiaodong Jian
02/29/95
  Author:
  Date:
       SUBROUTINE DATTB(NNODS, NDNAM, LDND, NDTND, DTND, LDDTND, UNITCD, NREC, DTTB, LDDTTB, DTFLAG, UNITNM, LDUNIT, FILNAM, IU, OU, PN, ENDFIL, TITLE, CTERM, COLSTR, LDCOL)
        TMPLICIT
                       NONE
                       NNODS, LDND, NDTND, LDDTND, DTND(LDDTND, 3), NREC,
        INTEGER
                        LDDTTB
                       DTTB(0:LDDTTB, LDDTND)
UNITCD, LDUNIT, IU, OU, PN
NDMAM(LDND)*(*), UNITNM(0:LDUNIT)*(*), FILNAM*(*)
        REAL
        INTEGER
        CHARACTER
                       DTFLAG, ENDFIL
        INTEGER
                       LDCOL
        CHARACTER TITLE*(*), CTERM*(*), COLSTR(LDCOL)*(*)
                       I, J, K, L, ND, SL, NNDS
ERR, CN, CNINT, DUMMY
SAVOPT
        INTEGER
        LOGICAL
                       /SAVOPT/ SAVOPT
        COMMON
        DUMMY = .FALSE.

DTFLAG = .FALSE.

ENDFIL = .TRUE.

NDTND = 0

NREC = 0
     -----Read data unit and nodal names
        READ (IU, *, END = 999) UNITCD
READ (IU, '(A)', END = 999) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
                                     IF (NNDS .EQ. 2) THE
DO J = 1, NNODS
DTND(J, 1) = J
DTND(J, 2) = UNITCD
DTND(J, 3) = 0
ENDDO
                                                                          THEN
                                                              ELSE
                               ELSE

L = NNDS - 2

DO J = 1, NNODS

IF (.NOT. CNINT(J, NNDS-2, DTND(1,1), K)) THEN

L = L + 1

DTND(L, 1) = J

DTND(L, 2) = UNITCD

DTND(L, 3) = 0

ENDIF

ENDDO
                                                                ENDDO
```

```
ENDIF
                                                              GOTO 50
                                                              ELSE
                     CALL NAMNUM(LDND, NDNAM, COLSTR(I), ND, 0, ERR)
IF (ERR) THEN
WRITE(*, 850) COLSTR(I), FILNAM
FORMAT( '***ERROR***NODAL NAME: 'A12,' IN THE FILE: ',A,
', 'NOT FOUND IN THE NETWORK CONFIGURATION.')
STOP!CALL EXIT
FILEE
 850
                                                                ELSE
                                                      DTND(I-1, 1) = ND
DTND(I-1, 2) = UNITCD
DTND(I-1, 3) = 0
ENDIF
                                                              ENDIF
        ENDDO
        NDTND = NNDS - 1
      -----Read data table
 50
        CONTINUE
        READ (IU, '(A)', END = 99) CTERM

IF (CN(CTERM, 'FINISH', 1)) GOTO 99

CALL STR_DIVD(CTERM, J, COLSTR, LDCOL, 0, ',')

IF (J .NE. NNDS) THEN
                                     PRINT *, '***ERROR*** FILE = ', FILNAM
PRINT *, 'FOR TIME = ', COLSTR(1)
                                    PRINT *,
                                                      STOP !CALL EXIT
        ENDIF
        NREC = NREC + 1
        DO J = 1, NNDS - 1
                                  READ (COLSTR(J+1), '(F15.0)') DTTB(NREC, J)
        ENDDO
        GOTO 50
       -----Output Title
 99
        CONTINUE
        IF (DUMMY) THEN
                                                 DO I = 1, NREC
DO J = NNDS, NDTND
DTTB(I, J) = DTTB(I, NNDS-1)
ENDDO
                                                             ENDDO
        ENDIF
                             IF (NREC .GT. 0) THEN
                FORMAT(//,
 801
                                               IF (.NOT. DUMMY) THEN
DO K = 1, NDTND, 8
IF ((K+7) .GT. NDTND) THEN
L = NDTND
                                                              ELSE
                                                             L = K + 7
                                                       ENDIF
WRITE(OU, 805)
                            (NDNAM(DTND(J,1))(1:SL(NDNAM(DTND(J,1)))),J = K,L)
      &
                                      DO \dot{I} = 1, NREC
WRITE (OU, 810) I, (DTTB(I, J), J = K, L)
                                                              ENDDO
                           FORMAT(/, 'SEASON', T10, 10A10)
FORMAT (15, T10, 10F10.2)
 805
 810
                                                            ENDIF
        ENDIF
 999
        CONTINUE
        RETURN
        END
                   RESSTG
* Name:
  Purpose:
                   Calculate reservoir stges.
        SUBROUTINE RESSTG(NND, NDTYP, NDSEQ, LDND, RC, INST, PTREAR, LDRES, REAR, LDREAR, FLOW, LDARC, XF)
                       NONE
                       LDND, LDRES, LDREAR, LDARC
        INTEGER
```

```
NND, NDTYP(LDND), NDSEO(LDND)
             INTEGER
                                    PTREAR(LDRES), REAR(LDREAR)
FLOW(LDARC)
RC(LDRES), INST(LDRES), XF
             INTEGER
             INTEGER
            REAL
             INTEGER
                                          I, LIM1, LIM2, RES, ARC, TYP
                                     STG
            REAL
             DO 200 N = 1, NND
                                                                TYP = NDTYP(N)

IF (TYP .EQ. 1) THEN

RES = NDSEQ(N)

STG = RC(RES)

LIM1 = PTREAR(RES)

LIM2 = PTREAR(RES + 1) - 1

DO 45 I = LIM1, LIM2

ARC = REAR(I)

IF (ARC .GT. 0) THEN

STG = STG + REAL(FLOW(ARC)) / XF

ELSE

ARC = -ARC

STG = STG - REAL(FLOW(ARC)) / XF

END IF
                                                                                                  END IF
  45
                         CONTINUE
                                                                                      INST(RES) = STG
                                                                                             ENDIF
  200 CONTINUE
            RETURN
            END
                             ndbud
   Purpose:
                              calculate nodal water budgets.
            SUBROUTINE NDBUD(FLOW, LDARC, RC, OINST, INST, RESDAT, LDRES, NND, NDTYP, NDSEQ, PTDWAR, LDND, DWAR, LDDWAR, NDXAR, NODBUD, XF, OU)
            IMPLICIT
                                    NONE
                                    NONE
LDARC, LDRES, LDND, LDDWAR,
FLOW(LDARC), NND, NDTYP(LDND), NDSEQ(LDND),
PTDWAR(LDND, 2), DWAR(LDDWAR)
NODBUD(LDND, 0:10), NDXAR(LDND, 6), OU
RC(LDRES), OINST(LDRES), INST(LDRES), RESDAT(LDRES,0:2)
            INTEGER
            REAL
            REAL
            INTEGER
                                    ISGN
                                    FLW, ZVA(3)
1, J, N, TYP, LIM1, LIM2, ARC, RES
GETZVA
            REAL
             INTEGER
            LOGICAL
            DO 200 N = 1, NND
            -----Initialize budget array
                                                                                  DO J = 0, 8

NODBUD(N, J) = 0

ENDDO

TYP = NDTYP(N)
*-----Total releases from a current node.
                                                                         FLW = 0.0

LIM1 = PTDWAR(N, 1)

LIM2 = PTDWAR(N, 2)

DO 50 J = LIM1, LIM2

ARC = DWAR(J)

IF (ARC. GT. 0) THEN

FLW = FLW + REAL (FLOW(ARC))

ELSE

FLW = FLW - REAL (FLOW(-ARC))

END IF
                                                                                        FLW = 0.0
                                                                                               END IF
 50
                  CONTINUE
                                                                             IF (TYP .EQ. 1) THEN
*----1. Reservoir budget
                                                              -----2. Local gain and loss
                                              DO I = 1, 5

ARC = NDXAR(N,I)

IF (ARC .NE. 0) THEN

IF (I .EQ. 1) THEN

NODBUD(N,2) = ISGN(ARC) * FLOW(IABS(ARC))

- NINT((OINST(RES) - RC(RES))*XF)

ELSE IF (I .EQ. 2) THEN

NODBUD(N,3) = ISGN(ARC) * FLOW(IABS(ARC))

ELSE IF (I .EQ. 3) THEN

NODBUD(N,4) = ISGN(ARC) * FLOW(IABS(ARC))

ELSE IF (I .EQ. 4) THEN

NODBUD(N,5) = ISGN(ARC) * FLOW(IABS(ARC))

ELSE IF (I .EQ. 5) THEN

NODBUD(N,6) = FLOW(NDXAR(N, 5)) - FLOW(NDXAR(N, 6))
```

```
ENDIF
                                                          ENDIF
     ----3. Downsteam release
                                                NODBUD(N,7) = FLW
              -----4. Final storage and reservoir elevatoin.
                           STOP ! CALL EXIT
                                                        ENDIF
          -----5. Upstream Inflow: Q = EV + L + W + R + S - I - P - So
                         NODBUD(N,1) = NODBUD(N,3) + NODBUD(N, 5) + NODBUD(N,6)
+ NODBUD(N,7) + NODBUD(N, 8)
- NODBUD(N,2) - NODBUD(N,4) - NODBUD(N,0) !INFLOW
ELSE IF (TYP .EQ. 2) THEN
*-----Water supply node budget
       ----1. Local Gain and Loss
                            DO I = 1, 6
ARC = NDXAR(N,I)
IF (ARC .NE. 0) THEN
IF (I .EQ. 1) THEN
NODBUD(N,2) = ISGN(ARC) * FLOW(IABS(ARC))
ELSE IF (I .EQ. 3) THEN
NODBUD(N,4) = ISGN(ARC) * FLOW(IABS(ARC))
ELSE IF (I .EQ. 5) THEN
NODBUD(N,6) = FLOW(NDXAR(N,5)) - FLOW(NDXAR(N,6))
ENDIF
                                                       ENDIF
                                                          ENDIF
                                                        ENDDO
    ----2. downstream release
                                                NODBUD(N,7) = FLW
            -----3. Upstream Inflow: Q = W + R - I - Runoff
                          NODBUD(N,1) = NODBUD(N,6) + NODBUD(N,7) - NODBUD(N,2)
                              - NODBUD(N,3)
                                                      ENDIF
 200
       CONTINUE
       RETURN
       END
* Name:
                 prtnd
Print nodal budget.
  Purpose:
       SUBROUTINE PRIND(NND, NDNAM, NDTYP, NODBUD, LDND, NOP, XF, XP, NSNBL, SNBLND, LDSNBL, SNBLFG, NDBFLG, ZEROFG, IOUT)
                     LDND, NND, NDTYP(LDND), NODBUD(LDND, 0:10), NOP, IOUT, XP, LDSNBL XF
       IMPLICIT
       INTEGER
       REAL
                     NSNBL, SNBLND(LDSNBL, 2)
       INTEGER
                     SNBLFG, NDBFLG, ZEROFG NDNAM(LDND)*(*)
       LOGICAL
       CHARACTER
                     I, N, K, OU
       INTEGER
       REAL
       CHARACTER
                    FMT2*60, CTERM*150
       LOGICAL
                     CNINT
       EPS = 5.0 * 10**(-XP)
       ZEROFG = .TRUE.
      -----Output time step
       IF (NDBFLG) THEN
           990
                                   [--, not applicable]',
   T21, ' Initial Upstream Local Net',
                     /,T30,
     &′
                                                          Downstream
ge inflow
             Evapo-
                                                                              Final
                                                                              inflow',
                                        T21, '
                                                   storage
                          {\tt Runoff}
                           Runofr
Water',
16, 'Node',T21, '
'acre- (acre-
                                     Seepage Withdrawal
                                                              release
             ration
                                                                            storage',
               Final
                                                                             (acre-',
                 Node', T16,
                                                     (acre-
                                                                  (acre-
                          (acre-
                                                   (àcre-
                                                                (àcre-
```

depth',

stage

```
/,'No. name',T16, 'type', T21, ' feet) feet) feet)',
' feet) feet) feet) feet) feet)',
' (feet) (feet)',
','----',T16, '---', T21, '-----',
*-----Save nodal water budgets
           IF (XP .GT. 0) THEN
                                                           FMT2 = '(F10.0)'
WRITE(FMT2(6:6), '(11)') XP - 1
DO N = 1, NND
CTERM = ' '
                           Nodal name and type
                                              WRITE(CTERM(1:20), '(13, 1x, A12, 1x, I2, 2x)')
N, NDNAM(N), NDTYP(N)
         &
                                       DO I = 0, 8

IF (NDTYP(N) .EQ. 2 .AND. (I .EQ. 0 .OR. I .EQ. 3

OR. I .EQ. 5 .OR. I .EQ. 8)) THEN

WRITE(CTERM((I+2)*10+1:(I+3)*10), '(6x,a2,2x)') '--'

ELSE IF (ABS(NODBUD(N, I)) .GT. 0 .OR. ZEROFG) THEN

WRITE(CTERM((I+2)*10+1:(I+3)*10), FMT2)

REAL(NODBUD(N, I)) / XF
                           Water budgets
          &
                                                                       CALL STR_LEN(CTERM, I)
                           Final stage and water depth
                                             IF (NDBFLG) THEN

IF (NDTYP(N) .EQ. 1) THEN

WRITE(IOUT, '(A, 2F10.2)') CTERM(1:1),

REAL(NODBUD(N,9))/100.,REAL(NODBUD(N,10))/100.
         &
                                      ELSE
WRITE(IOUT,'(A, 2x,2(6x,a2,2x))')CTERM(1:I),'--','--'
ENDIF
                                                                                         ENDIF
                                           &
                                                       WRITE(CTERM(I*10+1:(I+1)*10), FMT2) 0.0
ENDIF
                                                   ENDIF

ENDDO

CALL STR_LEN(CTERM, I)

IF (NDTYP(N) .EQ. 1) THEN

WRITE(OU, '(14, 6X, A, 2F10.2)')

NOP, CTERM(1:I), REAL(NODBUD(N,9))/100.,

REAL(NODBUD(N,10))/100.

ELSE

TE(OU, '(14, 6X, A, 2F10.2)') NOD CTERM(1
                                            WRITE(OU, '(14, 6X, A, F10.2)') NOP, CTERM(1:1)
                                                                                            ENDIF
                                                                                         ENDIF
                                                                                     ENDDO
                                   DO N = 1, NND
CTERM = ' '
WRITE(CTERM(1:20), '(I3, 1X, A12, 1X, I2, 2X)')
N, NDNAM(N), NDTYP(N)
           ELSE
                                     DO I = 0, 8

IF (ABS(NODBUD(N, I)) .GT. 0 .OR. ZEROFG) THEN

WRITE(CTERM((I+2)*10+1:(I+3)*10), '(I10)') NODBUD(N,I)

ENDIF
                                         END1F
ENDDO
CALL STR_LEN(CTERM, I)
IF (NDBFLG) THEN
IF (NDTYP(N) .EQ. 1) THEN
WRITE(IOUT, (A, 2F10.2)') CTERM(1:I),
REAL(NODBUD(N,9))/100.0, REAL(NODBUD(N,10))/100.0
                                                              ELSE
WRITE(IOUT, '(A)') CTERM(1:I)
ENDIF
                                                                                         ENDIF
                                           IF (SNBLFG .AND. CNINT(N, NSNBL, SNBLND, K) ) THEN OU = SNBLND(K, 2)
                                                       OU = SNBLND(R, 2,

CTERM = ' '
DO I = 0, 8

IF (ABS(NODBUD(N, I)) .GT. EPS) THEN
WRITE(CTERM(I*10+1:(I+1)*10), '(I10)')
NODBUD(N, I)
```

```
ELSE
                                                     WRITE(CTERM(I*10+1:(I+1)*10), '(I10)') 0
                                                                                    ENDÌF
                                            ENDIO

ENDOO

CALL STR_LEN(CTERM, I)

IF (NDTYP(N) .EQ. 1) THEN

RITE(OU, '(I4, 6X, A, 2F10.2)') NOP, CTERM(1:I),

REAL(NODBUD(N,9))/100., REAL(NODBUD(N,10))/100.
                                          WRITE(OU,
                                                                                         ELSE
                                           WRITE(OU, '(14, 6X, A, F10.2)') NOP, CTERM(1:I)
ENDIF
                                                                                      ENDIF
                                                                                   ENDDO
           ENDIF
           RETURN
                          NETWK_1
READ IN THE RESERVOIR ZONES AND CREATE THE CORRESPONDING
ARCS TO/FROM SINK/SOURCE NODE OR RIVERS
* Name:
   Purpose:
          SUBROUTINE NETWK_1(NDNAM, NDSEQ, LDND,
NARCS, II, JJ, HI, LO, COST, ARTYP, L
NRES, PTRES, RC, INST, RESDAT, LDRES,
PTREAR, LDPTRE, REAR, REZN, LDREAR,
SKSC, XF, FILNAM, NTLS,
IN, OU, PARTNO)
           IMPLICIT
INTEGER
                                 NONE
                                NONE
LDND, NDSEQ(LDND)
NDNAM(LDND)*(*)
NARCS, LDARC, II(LDARC), JJ(LDARC), HI(LDARC),
LO(LDARC), COST(LDARC), ARTYP(LDARC)
NRES, LDRES, PTRES(LDRES)
RC(LDRES), INST(LDRES),
RESDAT(LDRES, 0:2)
LDPTRE, PTREAR(LDPTRE), LDREAR, REAR(LDREAR)
REZN(LDREAR)
           INTEGER
           INTEGER
           REAL
           INTEGER
                                 REZN(LDREAR)
           INTEGER
                                 SKSC, NTLS, IN, IU, OU, PARTNO
           REAL
                                RCEL, BON, LVL1, LVL2, DIF, ZVA(3), INEL, EPS ND, CST, I, N, L, U, NZONE, NLZ, NUZ, NZ, UNITCD FILNAM*(*)
           REAL
           INTEGER
           CHARACTER
                                 CN, GETŽVÁ, ERR, FLAG
                                NCOL, LDCOL
(LDCOL = 15)
CTERM * 150, COLSTR(LDCOL)*15
           INTEGER
           PARAMETER
           CHARACTER
                                SAVOPT
           INTEGER
           COMMON
                                 /SAVOPT/ SAVOPT
           DATA
                                 EPS /0.0001/
         -----Open reservoir storage zone file
           IF (FILNAM .NE. ' ') THEN
                                                                          FLAG = .TRUE.

IU = 9

FILNAM, 'ENTER RESERVOIR FILE: ')

DO I = 1, NTLS

READ (IU, *)

ENDDO
                                   CALL IO_OPFIL(IU, 1,
           ELSE
                                                               FLAG = .FALSE.

IU = IN

CTERM = ' '

DO WHILE (CTERM .EQ. ' ')

AD (IU, '(A)', END = 100) CTERM
ENDOO

LYD(CTERM I COLSTR IDCOL 0
                                                           READ (IU,
                                   ENDDO

CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')

READ (COLSTR(2), '(12)') N

IF (CN(COLSTR(1), 'PART', 1) .AND. N .EQ. PARTNO) THEN

READ (IU, *) !SKIP THE VARIABLE LIST

ELSE

IF (CN(COLSTR(1), 'PART', 1) .AND. N .GT. PARTNO )THE
                                                                                 T', 1) .AND.
BACKSPACE(1)
GOTO 100
ENDIF
                                                                                               .AND. N .GT. PARTNO ) THEN
                                                        PRINT *, CHAR(7)

'***ERROR***ERROR IN RESERVOIR ZONING DATA'
, 'PART = ', COLSTR(1), 'NO = ', COLSTR(2)

STOP !CALL EXIT
                                          PRINT *, 'PART =
                                                                                   ENDIF
           ENDIF
           NRES = 0
                                  ! TOTAL NUMBER OF EXISTING ZONES.
           IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ.
                                                                              1) THEN
                                                                         WRITÉ (OU, 800)
 800
                FORMAT (//,
                                       'Part 1: Pond-storage zoning information'
          ENDIF
```

*-----Read reservoir name, rule curve, zones, intial storage,

```
bottom information, and zones.
         CONTINUE

\mathbf{NLZ} = 0 \\
\mathbf{NUZ} = 0

         READ (IU, '(A)', END = 100) CTERM

IF (CTERM .EQ. ' ') GOTO 5

CALL STR_DIVD(CTERM, NCOL, COLSTR, LDCOL, 0, ',')

IF (CN(COLSTR(1), 'FINISH', 1)) GOTO 100
*----1. Reservoir node name and its nodal number
         CALL NAMNUM(LDND, NDNAM, COLSTR(1), ND, 0, ERR)
         IF (ERR) THEN
PRINT *, '***Error*** There is no Z-V-A table for pond node:',
                             COLSTR(1)
PRINT *, 'which is specified in the pond zoning file.'
                                                                       STOP
         ENDIF
NRES = NRES + 1
PTRES(NRES) = ND
NDSEQ(ND) = NRES
         IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN WRITE (OU, 801) NDNAM(ND), ND FORMAT(/,A, T15, I10, T40,
 801
                      `:Pond name and corresponding node number')
         ENDIF
*----2. Stage unit code
         READ (COLSTR(2), '(12)') UNITCD
    -----3. Reservoir initial stroage, bottom elvation, poolbed hydraulic conductivity, and poolbed thickness
         READ (COLSTR(3), '(F10.0)') INEL IF (UNITCD .EQ. 0) THEN
                                           ZVA(1) = INEL

IF (.NOT. GETZVA(ND, 1, ZVA, OU)) THEN

ERR = .TRUE.

WRITE (OU, 1) NDNAM(ND)
                   FORMAT ('****ERROR***',
'IN TRANSFORMING INITIAL POOR ELEVATION INTO STORAGE'
/,' FOR RESERVOIR: ', A, 'AT NETWK_1')
STOP
 1
                                                                     END IF
                                                           INST(NRES) = ZVA(2)
         ELSE IF (UNITCD .EQ. 1) THEN
                                                            INST(NRES) = INEL
         ENDIF
   -----4. Reservoir bottom elevation and hydraulic properties.
         DO I = 0, 2
                                      READ(COLSTR(I+4), '(F10.0)') RESDAT(NRES, I)
         ENDDO
         IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

WRITE (OU, 803) (RESDAT(NRES, I), I = 0, 2)

FORMAT(5X, 3F10.2, T40,

S:Bottom elevation, hydraulic conductivity, and thickness')
 803
         ENDIF
        -----5. Reservoir rule curve
         READ (COLSTR(7), '(F10.0)') RCEL IF (UNITCD .EQ. 0) THEN
                   ZVA(1) = RCEL

IF (.NOT. GETZVA(ND, 1, ZVA, OU)) THEN

ERR = .TRUE.

WRITE (OU, 2) NDNAM(ND)

FORMAT ('***ERROR*** IN TRANSFORMING RULE CURVE ELEVATION',

', ' INTO CORREPONDING STORAGE FOR RESERVOIR: ', A)

STOP | CALL EXIT
                                                            END IF
RC(NRES) = ZVA(2)
         ELSE
                                                              RC(NRES) = RCEL
         ENDIF
IF (INST(NRES) .LE. EPS) THEN
INST(NRES) = RC(NRES)
         ENDIF
         ENDIF
IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
IF (UNITCD .EQ. 0) THEN
WRITE (OU, 805) INST(NRES), RCEL,
':Rule-curve elevation, in feet'
ELSE
WRITE (OU, 805) INST(NRES), RC(NRES
':Rule-curve storage, in acre-feet'
ENDIF
        &
                                                                                           RC(NRES),
                                           T40, ':Initial storage, in acre-feet',
 805
              FORMAT(3X, F12.2,
         /,3X, F12.2, T40, A)
ENDIF
```

```
-----6 reservoir zoning
             FOR NODE: ', NDNAM(ND)
STOP !CALL EXIT
              ENDIF
             DO 25 N = 1, NZONE
                                                            TRANSFORM THE BOND FROM STAGE TO A VOLUME
                                       IF (UNITCD .EQ. 0) THEN
IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
WRITE (OU, 806) N, BON, CST,
':Zone number, elevation, and penalty coefficient'
ENDIF
           8
                                                            ZVA(1) = BON

IF (.NOT. GETZVA(ND, 1, ZVA, OU)) THEN

ERR = .TRUE.

WRITE (OU, 910) ND

STOP
                                                       STOP
END IF
BON = ZVA(2)
ELSE

IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
WRITE (OU, 806) N, BON, CST,
':ZONE NUMBER, STORAGE, AND PENALTY COST'
                 ENDIF

FORMAT (15, F10.2, 17, T40, A)

DIF = BON - RC(NRES)

IF (DIF .GE. 0) THEN

NUZ = NUZ + 1

U = NINT((BON - LVL1)*XF)

LVL1 = BON

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, ND, SKSC, O, U, CST, 200+NUZ)

PTREAR(NRES+1) = PTREAR(NRES+1) + 1

REAR(NZ) = NARCS

ELSE

NLZ = NLZ + 1

U = NINT((LVL2 - BON)*XF)

LVL2 = BON

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, SKSC, ND, O, U, CST, -200-NLZ)

PTREAR(NRES+1) = PTREAR(NRES+1) + 1

REAR(NZ) = NARCS

END IF
                                                                                               ENDIF
   806
           æ
                                                                                   REZN(NZ) = BON
  25
             CONTINUE
  100
             CONTINUE
            CONTINUE,
PTREAR(1) = 1
DO 50 L = 2, NRES + 1
PTREAR (L) = PTREAR(L) + PTREAR(L-1)
  50
             IF (FLAG) THEN
                                                                                       CLOSE (IU)
             ENDIF
            RETURN
            FORMAT ('*** ERROR IN TRANSFORMING RESERVOIR BONDS OF POND',
NO. ', I2, ' ***')
  910
            END
* Name:
                             NETWK2
                             READ IN CHANNEL ZONES FOR WATER NODES, CREATE THE CORRESPONDING ARCS TO/FROM SINK/SOURCE NODE OR RIVERS
   Purpose:
           SUBROUTINE NETWK_2(NNODS, NDNAM, NDTYP, LDND,
NARCS, II, JJ, HI, LO, COST, ARTYP, LD
NARCND, NSTRM, STRMCF, STRMAR, LDSTRM,
PTDWAR, LDPT, NDWAR, DWAR, LDDWAR,
NCTAR, CTARFW, LDCTAR,
PERD, C, XF, FILNAM, NTLS,
IN, OU, PARTNO)
                                                                                                                                LDARC,
          æ
            IMPLICIT
                                    NONE
            INTEGER NNODS, LDND, NDTYP(LDND) CHARACTER NDNAM(LDND)*(*)
                                    NARCS, LDARC, II(LDARC), JJ(LDARC), HI(LDARC), LO(LDARC), COST(LDARC), ARTYP(LDARC)
NARCND, LDSTRM, NSTRM, STRMAR(LDSTRM, 0:6)
STRMCF(LDSTRM, 0:4)
LDPT, PTDWAR(LDPT, 2), LDDWAR, NDWAR, DWAR(LDDWAR)
LDCTAR, NCTAR, CTARFW(LDCTAR, 3)
            INTEGER
            INTEGER
            REAL.
            INTEGER
             INTEGER
```

```
IU, NTLS, IN, OU, PARTNO PERD, C, XF
                         INTEGER
                         REAL
                                                                     I, J, L, N, U, ZONE, UPND, OUPND, MDND, DWND, ODWND, NCOL, LDCOL, NRND, CST, LZONE, UZONE, TYP LVL1, LBND, UBND, RTERM, EPS (LDCOL = 15)
CTERM*150, COLSTR(LDCOL)*20, FILNAM*(*)
CN, ERR, STRM, ITOJ, FLAG
SAVOPT
/SAVOPT/SAVOPT
EPS /0 00001/
                         INTEGER
                         REAL.
                         PARAMETER
                         CHARACTER
                         LOGICAL
                         INTEGER
                         COMMON
                                                                       EPS /0.00001/
         ----Open flow network file
                        IF (FILNAM .NE. ' ') THEN
                                                                                                                                                                 FLAG = .TRUE.

IU = 9

1, FILNAM, 'Enter network file: ')

DO I = 1, NTLS

READ (IU, *)
                                                                                 CALL IO_OPFIL(IU, 1,
                                                                                                                                                                                    ENDDO
                        ELSE
                                                                                                                               FLAG = .FALSE.

IU = IN

CTERM = ' '

DO WHILE (CTERM .EQ. ' ')

READ (IU, '(A)', END = 100) CTERM
ENDDO

DIVINGEMENT INCOLUMN INCOLUMN
                                                                             ENDDO

CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')

READ (COLSTR(2), '(12)') N

IF (CN(COLSTR(1), 'PART', 1) .AND. N .EQ. PARTNO) THEN

READ (IU, *) !SKIP THE VARIABLE LIST

ELSE

IF (CN(COLSTR(1), 'PART', 1) .AND. N .GT. PARTNO )THE

BACKSPACE(1)
                                                                                                                                                                                  T', 1) .AND. N .GT. PARTNO )THEN
BACKSPACE(1)
GOTO 100
ENDIF
                                                                                                PRINT *, CHAR(7)
PRINT *, `***ERROR***ERROR IN FLOW NETWORK DATA'
STOP !CALL EXIT
                                                                                                                                                                                     ENDIF
                        ENDIF
                         -----Initialize some array
                        DO I = 1, LDSTRM
                                                                                                                                                               DO J = 0, 4
STRMCF(I, J) = 0.0
ENDDO
DO J = 0, 6
STRMAR(I, J) = 0
ENDDO
                        ENDDO
                       IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN WRITE (OU, 800)

FORMAT (//, 'Part 2: Network flow configuration',
   800
                                                                                                                                                               WRITE (OU, 801) Upper',
                                                        T26, bour
                                    FORMAT( T26, 'T58 'Tnit
   801
                                                                                                                   Lower
                                           // T26, boundary boundary / coefficien /, T25, coubic feet (cubic feet Penalty ', T60, ' (acre- time Weighting Seepage /, T25, per second) per second) coefficient /, T60, ' feet) (day) factor coefficient /, T25, coefficient /,
                                                                                                                                                                                                                                                      Evaporation',
                                                                                                                                                                                                                                                        coefficient',
                                                                                                                                                                                                                                                          (inches ',
                                                                                                                                                                                                                                                       ----')
                        ENDIF

\begin{aligned}
NARCND &= 0 \\
OUPND &= 0 \\
ODWND &= 0
\end{aligned}

                        NDWAR = 0
NRND = 0
                        CONTINUE
                       CONTINUE
READ (IU, '(A)', END = 100) CTERM

IF (CTERM .EQ. ' ') GOTO 5

CALL STR_DIVD(CTERM, NCOL, COLSTR, LDCOL, 0, ',')

IF (CN(COLSTR(1), 'FINISH', 1)) GOTO 100

STRM = .FALSE.

IF (NCOL .GT. 5) THEN
                                                                                                                               DO I = 6, NCOL

READ (COLSTR(I), '(F10.0)') RTERM

IF (ABS(RTERM) .GT. EPS) THEN

STRM = .TRUE.

ENDIF
                        ENDIF
*-----Upstream node and downstream node
```

```
CALL NAMNUM(LDND, NDNAM, COLSTR(1), UPND, 0, ERR)
      (ERR) THÈN
                                                         NNODS = NNODS + 1
NDNAM(NNODS) = COLSTR(1)
CALL STR_CORS(NDNAM(NNODS), 1)
                                                                         NDTYP(NNODS) = UPND = NNODS
 CALL NAMNUM(LDND, NDNAM, COLSTR(2), DWND, 0, ERR)
IF (ERR) THEN
                                                                        NNODS = NNODS + 1
                                                         NNODS = NNODS + 1
NDNAM(NNODS) = COLSTR(2)
CALL STR_CORS(NDNAM(NNODS), 1)
NDTYP(NNODS) = 2
DWND = NNODS
 ENDIF
IF (UPND .NE. OUPND) THEN
                                                             NRND = NRND + 1
PTDWAR(UPND, 1) = NDWAR + 1
OUPND = UPND
                                                                                  ODWND = 0
ENDIF
IF (DWND .NE. ODWND ) THEN
                                                                                   ZONE = 1
                                                                                  UZONE = 0
LZONE = 0
                                                                              ODWND = DWND
ELSE
                                                                           ZONE = ZONE + 1
ENDIF
     -----Determine flow bounds and flow direction.
READ (COLSTR(3), '(F10.0)') LBND
READ (COLSTR(4), '(F10.0)') UBND
READ (COLSTR(5), '(110)') CST
IF (ZONE .EQ. 1) THEN
                                                            ITOJ = .TRUE.

LVL1 = UBND

IF (LBND .GE. 0) THEN

L = NINT(LBND *C * PERD * XF)
                                                                                       ELSE
                                                                                                  0
                                      L = 0
ENDIF

U = NINT(UBND * C * PERD * XF)

IF (STRM) THEN
NARCND = NARCND + 1
MDND = LDND - NARCND
NDNAM(MDND) = 'STRM'

WRITE(NDNAM(MDND)(5:10), '(13.3,13.3)')UPND, DWND
ENDIF
ELSE
                                                                IF (UBND .GE. LVL1) THEN
ITOJ = .TRUE.
UZONE = UZONE + 1
                                                                            ELSE
ITOJ = .FALSE.
LZONE = LZONE + 1
                                                                                      ENDIF
                                               U = NINT((UBND - LBND) * C * PERD * XF)
ENDIF
     -----Create flow arcs.
                                       IF (STRM) THEN

TYP = 110 + UZONE

NSTRM = NSTRM + 1

STRMAR(NSTRM, 0) = MDND

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, UPND, MDND, L, U, CST, TYP)

NDWAR = NDWAR + 1

DWAR(NDWAR) = NARCS

PTDWAR(UPND, 2) = NDWAR

STRMAR(NSTRM, 1) = NARCS

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, MDND, DWND, L, U, CST, TYP)

STRMAR(NSTRM, 6) = NARCS

DO I = 6, NCOL

J = I - 6

READ (COLSTR(I), (F15.0)') STRMCF(NSTRM, J)

ENDDO

ELSE
IF (ITOJ) THEN
                                        ENDED

ELSE

TYP = 100 + UZONE

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, UPND, DWND, L, U, CST, TYP)

NDWAR = NDWAR + 1

DWAR(NDWAR) = NARCS

PTDWAR(UPND, 2) = NDWAR

ENDIF
```

ELSE

```
IF (STRM) THEN

TYP = -110 - LZONE

NSTRM = NSTRM + 1

STRMAR(NSTRM, 0) = MDND

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, MDND, UPND, L, U, CST, TYP)

NDWAR = NDWAR + 1

DWAR(NDWAR) = -NARCS

PTDWAR(UPND, 2) = NDWAR

STRMAR(NSTRM, 1) = -NARCS

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, DWND, MDND, L, U, CST, TYP)

STRMAR(NSTRM, 6) = -NARCS

DO I = 6, NCOL

J = I - 6

READ (COLSTR(I), '(F15.0)') STRMCF(NSTRM, J)

ENDDO

ELSE
           &
           &
                                                    ENDIDO

ELSE

TYP = -110 - LZONE

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,
LDARC, DWND, UPND, L, U, CST, TYP)

NDWAR = NDWAR + 1

DWAR(NDWAR) = -NARCS

PTDWAR(UPND, 2) = NDWAR

ENDIF
           &
             ENDIF
                              if lower bound of the current flow range is less than zero, then the current arc is control arc and the lower flow bound will be determined.
             IF (LBND .LT. 0) THEN
                                                                                 NCTAR = NCTAR +
                                         CTARFW(NCTAR, 1) = NARCS
CTARFW(NCTAR, 2) = 0
CTARFW(NCTAR, 3) = - NINT(LBND * C * REAL(PERD) * XF)
             ENDIF
             IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

IF (STRM) THEN

WRITE(OU, 805) NDNAM(UPND), NDNAM(DWND), LBND, UBND, CST,

(STRMCF(NSTRM, I), I = 0, 4)

FORMAT(2A12, T26, 2F10.2, I10, 5F10.2)

FILSE
  805
                                                                                                ELSE
                          WRITE(OU, 806) NDNAM(UPND), NDNAM(DWND), LBND, UBND, CST FORMAT(2A12, T26, 2F10.2, I10) ENDIF
  806
             ENDIF
                              next arc
             GOTO 5
CONTINUE
  100
             IF (FLAG) THEN
                                                                                         CLOSE (IU)
             ENDIF
             RETURN
             END
* Name:
                              strm_dat
* Purpose:
* Author:
                              Read stream geometry data.
                              Xiaodong Jian
12/05/95
            SUBROUTINE STRM_DAT(NDNAM, LDND, II, JJ, LDARC,
NSTRM, STRMAR, LDSTRM,
NSTR, STRDIR, STRDAT, LDSTR,
FILNAM, NTLS, IN, OU, PARTNO)
           &
           &
             IMPLICIT
                                     NONE
             INTEGER
                                     L'DND
                                    LDND
HDNAM(LDND)*(*), FILNAM*(*)
LDARC, II(LDARC), JJ(LDARC), NTLS
NSTRM, LDSTRM, STRMAR(LDSTRM, 0:6)
NSTR, LDSTR, STRDIR(LDSTR, 3)
STRDAT(LDSTR, 9)
             CHARACTER
             INTEGER
             INTEGER
             INTEGER
             REAL
                                    LDCOL (LDCOL = 15)
CTERM*150, COLSTR(LDCOL)*15
ND, UPND, DWND
I, J, K, N, IN, IU, OU, PARTNO
ERR, CN, FLAG
             INTEGER
             PARAMETER
             CHARACTER
             INTEGER
             INTEGER
             LOGICAL
             INTEGER
                                     /SAVOPT/ SAVOPT
             COMMON
             NSTR = 0
           -----open data file and read title lines
             IF (FILNAM .NE. ' ') THEN
                                                                                     FLAG = .TRUE.
IU = 9
                                CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER THE STREAM GEOMETRIC FILE: ')
                                                                              DO I = 1, NTLS
READ (IU, *, END = 100)
```

ENDDO

```
ELSE
                                                          FLAG = .FALSE.

IU = IN

CTERM = ' '
                                              DO WHILE (CTERM EQ. ' ')
READ (IU, '(A)', END = 999) CTERM
ENDDO
                           ENDDO

CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')

READ (COLSTR(2), '(12)') N

IF (CN(COLSTR(1), 'PART', 1) AND. N .EQ. PARTNO) THEN

READ (IU, *) !SKIP THE VARIABLE LIST

ELSE

IF (CN(COLSTR(1), 'PART', 1) AND. N .GT. PARTNO )THE
                                                                T', 1) .AND. N .GT. PARTNO )THEN BACKSPACE(1)
                                       PRINT *, '***ERROR***ERROR IN STREAM DATA'
STOP !CALL EXIT
                                                                 ENDIF
         ENDIF
        IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN WRITE(OU, 800) FORMAT(//, \PART 3: Canal geometry data',
 800
                                                   Т25,
                                                   Riverbed
       & /,
             ζ,
       &
         ENDIF
       -----Read data
         CONTINUE
        CONTINUE
READ (IU, '(A)', END = 100) CTERM
IF (CTERM .EQ. '') GOTO 5
CALL STR_DIVD(CTERM, K, COLSTR, LDCOL, 0, ',')
IF (CN(COLSTR(1), 'FINISH', 1)) GOTO 100
IF (K .LT. 7) THEN
                       PRINT *, CHAR(7)
PRINT *, '***ERROR*** INCOMPLETE DATA SET IN GEOMETRIC FILE'
                                                         STOP !CALL EXIT
         ENDIF
        NSTR = NSTR + 1
DO J = 1, K
                                   IF (J .LE. 2) THEN
CALL NAMNUM(LDND, NDNAM, COLSTR(J), ND, 0, ERR)
STRDIR(NSTR, J) = ND
                                                                  ELSE
                                      READ(COLSTR(J), '(F15.0)') STRDAT(NSTR, J-2)
                                                                 ENDIF
         ENDDO
        IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN
WRITE (OU, 805) (NDNAM(STRDIR(NSTR,J)), J=1,2),
(STRDAT(NSTR,J), J=1,9)
FORMAT(A12, A12, F10.4, F10.2, F10.6, F10.2, F10.6, 4F10.2)
 805
        ENDIF
        GOTO 5
 100
        CONTINUE
            (FLAG) CLOSE(IU)
                     Find the middle stream node between the upstream node
                     and downstream node.
        DO 20 I = 1, NSTR
                          DO J = 1, NSTRM

UPND = II(IABS(STRMAR(J, 1)))

DWND = JJ(IABS(STRMAR(J, 6)))

IF(UPND .EQ. STRDIR(I, 1) .AND . DWND .EQ. STRDIR(I, 2))THEN

STRDIR(I, 3) = STRMAR(J, 0)

GOTO 20

ENDLE
                                                                   ENDIF
                                                                 ENDDO
                                                        STRDIR(I, 3) = 0
        CONTINUE
 999
        RETURN
* Name:
                    strm_rout
        ose: Channel Routing
  Purpose:
                                            ______
        SUBROUTINE STRM_ROUT(
NARCS, II, JJ, HI, LO, COST, FLOW, ARTYP, MXARC,
```

```
NSTRM, STRMCF, STRMAR, LDSTRM, NSTR, STRDIR, STRDAT, LDSTR, NGWND, GWND, GWLVL, LDGWND, NEV, EVND, LDEV, EVIDX, EVTB, LDEVTB, SKSC, PERD, XF)
          æ
            IMPLICIT
                                   NONE
                                   NONE
NARCS, MXARC, NSTRM, LDSTRM, SKSC
II(MXARC), JJ(MXARC), HI(MXARC), LO(MXARC),
COST(MXARC), ARTYP(MXARC), FLOW(MXARC)
STRMCF(LDSTRM, 0:4)
STRMAR(LDSTRM, 0:6)
NSTR, LDSTR, STRDIR(LDSTR, 3)
STRDAT(LDSTR, 9)
NGWND, LDGWND, GWND(LDGWND)
GWLVL(LDGWND)
            INTEGER
            INTEGER
           REAL
            INTEGER
            INTEGER
            INTEGER
            REAL
                                   NEV, LDEV, EVND(LDEV,3), EVIDX, LDEVTB EVTB(0:LDEVTB, LDEV), EV, AREA
            INTEGER
            REAL
            REAL
                                   PERD, XF
                                   I, J, ND, ND1, ND2, ARC, ISGN, S, VAL, ARC1, ARC2 \mathtt{OND1},\ \mathtt{OND2}
            INTEGER
            INTEGER
                                   K, X, IFLW, OFLW, ROUGH, LENGTH, SLOPE, WIDTH, ML, MR, HMAX, DISCH
           REAL
            INTEGER
                                    IERR
                                   H, HGW, KY, DY, ZB, FAC
            REAL
                                   FLAG, EVFLAG
            LOGICAL
            REAL
                                   EPS
                                   EPS /0.0001/
            DATA

\begin{array}{rcl}
OND1 &=& 0\\
OND2 &=& 0
\end{array}

            DO 100 S = 1, NSTRM
              ----arc and node infomation
                                                                            ND = STRMAR(S, 0)
                                                                           ND = SIRPIAR(S, 0)

ARC1 = STRMAR(S, 1)

ARC2 = STRMAR(S, 6)

IF (ARC1 .GT. 0) THEN

ND1 = II(ARC1)

ND2 = JJ(ARC2)
                                                                                   ELSE
ND1 = JJ(-ARC1)
ND2 = II(-ARC2)
                                                                                         ENDIF
    -----The channel surface evaporation occurs only in the normal flow range because flow are supposed in the normal flow range.
                                                   EVFLAG = .TRUE.
ELSE
                                                                                          AG = .FALSE.
ENDIF
                                                                                  EVFLAG =
*----channel geometric data
                                                                                FLAG = .FALSE.
DO I = 1, NSTR
AREA = 0.0
                                                                     AREA = 0.0

IF (ND .EQ. STRDIR(I, 3)) THEN

ROUGH = STRDAT(I, 1)

LENGTH = STRDAT(I, 2)

SLOPE = STRDAT(I, 3)

WIDTH = STRDAT(I, 4)

ML = STRDAT(I, 5)

MR = ML

HMAX = STRDAT(I, 6)

KY = STRDAT(I, 7)

DY = STRDAT(I, 8)

= STRDAT(I, 9) - 0.5 * LENGTH * SLOPE

FLAG = .TRUE.
                                                                   IF (ND
    -----Using Manning's equation to estimate water depth and width
                                           IFLW = FLOW(ABS(ARC1)) / PERD * 43560 / XF
OFLW = FLOW(ABS(ARC2)) / PERD * 43560 / XF
DISCH = 0.5 * (IFLW + OFLW) / 86400.0

CALL CHDEP(ROUGH, DISCH, SLOPE, WIDTH, ML, MR, HMAX, H,
1.486, 0.001, 200, IERR)
WIDTH = WIDTH + ML*H + MR*H
IF (H .GT. EPS) THEN
AREA = WIDTH * LENGTH
ENDIF
                                                                                                ENDIF
                                                                                IF (IERR .EQ. 0) THEN
                                           CONTINUE

ELSE IF (IERR .EQ. 1) THEN

PRINT *, '***WARNING*** H > HMAX FOR CHANNEL: ', S
```

```
ENDIF
                                                                                               GOTO 10
                                                                                              ENDIF
  10
                   CONTINUE
           ----A. Channel seepage
                                         VAL = 0

IF (STRMCF(S, 3) .GT. EPS) THEN

ARC = STRMAR(S, 1)

VAL = NINT(ISGN(ARC) * STRMCF(S, 3) * FLOW (IABS(ARC)))

ELSE IF (STRMCF(S, 3) .LT. -EPS .AND. FLAG) THEN
       -----2. Estimate Groundwater level if available
                                              ENDIF
ENDDO
IF (J.GT. 0) THEN
HGW = HGW / REAL(J)
ENDIF
                                                                                              ENDIF
       ----3. calculate seepages
                                                          ENDIF
                                     VAL = NINT(KY * H / DY * LENGTH * WIDTH * PERD/43560. * XF)
                                                                                           ENDIF
  20
                   CONTINUE
                                                    IF (ABS(VAL) .GT. EPS) THEN

IF (VAL .GT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, MXARC, ND, SKSC, VAL, VAL, 0, 10)

ELSE IF (VAL .LT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, MXARC, SKSC, ND, -VAL, -VAL, 0, -10)

ENDIF

STRMAR(S, 3) = ISGN(VAL) * NARCS

ELSE

STRMAR(S, 3) = 0

ENDIF
*-----B. Channel water surface evaporation. Surface evaporation coefficients

* are obtained in two ways: (1) If the channel water surface

* evaporation coefficient is specified, this value will be used

* for whole simulation period, and (2) If the ev value is not specified

* the values in the upstream and downstream nodes will be averaged.
                           IF (ABS(STRMCF(S, 4)) .GT. EPS .AND. EVFLAG .AND. AREA .GT. EPS) THEN
                                        FAC = 1.0
ENDIF

IF (EVND(1,3) .NE. 0) THEN
EV = EV + EVTB(0, I) * FAC
ELSE
EV = EV + EVTB(EVIDX, I) * FAC
                                                                                              ENDIF
                                                                                           ENDIF
                                                                                   ENDIF
ENDDO
IF (J .GT. 0) THEN
EV = EV / J
ENDIF
                                                                                             ENDIF
                                               ENDIF

IF (EV .GT. EPS) THEN

VAL = NINT(EV * PERD / 12.0 * AREA / 43560.0 * XF)

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

MXARC, ND, SKSC, VAL, VAL, 0, 11)

STRMAR(S, 4) = ISGN(VAL) * NARCS

ELSE

STRMAR(S, 4) = 0

ENDIF
```

CONTINUE

```
*-----C. Channel Routing
                                                                  IF (ABS(STRMCF(S,1)) .GT. EPS) THEN
     -----Initial storage arc
                                                            VAL = NINT(STRMCF(S, 0) * XF)

IF (VAL .GT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, MXARC, SKSC, ND, VAL, VAL, 0, 8)

STRMAR(S, 2) = ISGN(VAL) * NARCS
ELSE IF (VAL .LT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, MXARC, ND, SKSC, -VAL, -VAL, 0, -8)

STRMAR(S, 2) = ISGN(VAL) * NARCS
ELSE

STRMAR(S, 2) = 0

ENDIF
            &
            &
*-----Final Storage arc
                                   ARC = STRMAR(S, 1)

IFLW = FLOW(ABS(ARC1)) / PERD * 43560 / XF ! FLOW RATE IN

OFLW = FLOW(ABS(ARC2)) / PERD * 43560 / XF

K = STRMCF(S,1)

X = STRMCF(S,2)

VAL = NINT(K * (X * IFLW + (1.0 - X) * OFLW)/43560.0 * XF)

VAL = ISGN(ARC) * VAL
                                                                                                                                                     ! FLOW RATE IN CFD
                                                            IF (VAL .GT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,
MXARC, ND, SKSC, VAL, VAL, 0, 9)

STRMAR(S, 5) = ISGN(VAL) * NARCS

ELSE IF (VAL .LT. 0) THEN

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,
MXARC, SKSC, ND, -VAL, -VAL, 0, -9)

STRMAR(S, 5) = ISGN(VAL) * NARCS

ELSE

STRMAR(S, 5) = 0

ENDIF

ENDIF
            æ
            &
                                                                                                         ENDIF
 100 CONTINUE
  99
              RETURN
              END
* Name:
                             strm_kx
                                Estimate routing coefficients: travel time K and weighting factor x if these coefficient are not specified.
   Purpose:
             SUBROUTINE STRM_KX(NSTRM, STRMAR, STRMCF, LDSTRM, STRMAR, STRDAT, LDSTR)
              IMPLICIT
                                         NONE
                                         NSTRM, LDSTRM, NSTR, LDSTR, METHOD STRMAR(LDSTRM,0:6), STRDIR(LDSTR, 3) STRMCF(LDSTRM, 0:3), STRDAT(LDSTR, 9)
              INTEGER
              INTEGER
                                        N, L, S, W, M, D, R, P
K, X, EPS
I, J, ND
EPS/0.00001/
              REAL
              REAL
               INTEGER
              DATA
              DO 100 J = 1, NSTRM
                                                                        ENDDO
                                                                                                        GOTO 100
  50
                            CONTINUE
                                                                                METHOD = -NINT(STRMCF(J, 1))
                                                                                              N = STRDAT(I, 1)
L = STRDAT(I, 2)
                                                                                               S = STRDAT(I, 3)
W = STRDAT(I, 4)
M = STRDAT(I, 5)
                                                                                               D = STRDAT(I, 6)
                                                      IF (METHOD .EQ. 1) THEN

K = 0.7872 * L * W**0.4 * N**0.6 / S**0.3 / 86400.0

X = 0.0

ELSE IF (METHOD .EQ. 2) THEN

P = W + 2.0 * D * SQRT(1.0 + M * M)

R = (W + M * D) * D / P

K = L * N / (1.49 * (R**0.6667) * SQRT(S)) / 86400.0

X = 1.49 * SQRT(S) / (N * P**0.6667)

ENDIF

STRMCF(J. 1) = K
                                                                                               STRMCF(J, 1) = K
STRMCF(J, 2) = X
ENDIF
             CONTINUE
 100
              RETURN
```

```
*==============
* Name:
                   tws_dat
                    Get seasonal target water demands.
  Purpose:
                                                                       ______
        SUBROUTINE TWS_DAT(NNODS, NDNAM, LDND, NWSND, WSND, LDWS, NPER,
WSTB, LDWSTB, WSUNIT, WSFLAG, PN, FILNAM, NTLS,
IN, OU, UNITNM, LDUNIT, CTERM, COLSTR, LDCOL)
       &
        INTEGER NOODS, LDND, LDCOL
CHARACTER*(*) NDNAM(LDND), FILNAM, CTERM, COLSTR(LDCOL)
INTEGER NWSND, LDWS, WSND(LDWS, 3), WSUNIT, NPER, LDWSTB
REAL WSTB(0:LDWSTB, LDWS)
INTEGER NTLS, IN, PN
LOGICAL WSFLAG
         INTEGER
                        I, NREC, IU, OU
FLAG, ENDFIL
LDUNIT
         LOGICAL
         INTEGER
         CHARACTER UNITHM(0:LDUNIT)*(*)
       -----Open data file and skip title lines
         IF (FILNAM .NE. ' ') THEN
                        ELSE
                                FLAG = .FALSE.

IU = IN

CALL PNCK(PN, IU, ENDFIL, CTERM, COLSTR, LDCOL)

IF (ENDFIL) GOTO 99
         ENDIF
                 ----Read units, nonal names, and data from a file and print these information into general output file.
        CALL DATTB(NNODS, NDNAM, LDND, NWSND, WSND, LDWS, WSUNIT,
NREC, WSTB, LDWSTB, WSFLAG,
UNITNM, LDUNIT, FILNAM, IU, OU, PN, ENDFIL,
'target water demands',
CTERM, COLSTR, LDCOL)
        IF (NREC .LT. NPER) THEN
            805
       &
        ENDIF
 99
        CONTINUE
        IF (FLAG) CLOSE(IU) RETURN
        END
* Name:
                    tws_arc
  Purpose:
                    Read current target water demand and create
                 corresponding TWS arcs.
        SUBROUTINE TWS_ARC(NARC, II, JJ, LO, HI, COST, ARTYP, LDARC,
NWSND, WSND, LDWS, WSTB, LDWSTB, WSFIL,
NDXAR, LDXAR, MTH, SKSC, PERD, MXCST, XF, IU,
CTERM, COLSTR, LDCOL)
        IMPLICIT
                        NONE
                                 LDARC
                        NARC,
        INTEGER
                        NARC, LDARC,
II(LDARC), JJ(LDARC), LO(LDARC), HI(LDARC),
COST(LDARC), ARTYP(LDARC)
NWSND, LDWS, WSND(LDWS, 3), LDWSTB
WSTB(0:LDWSTB, LDWS)
WSFIL
LDXAR, NDXAR(LDXAR, 6)
        INTEGER
        REAL
        LOGICAL
         INTEGER
        INTEGER
                        IU, MTH, SKSC, MXCST
                        PERD, XF
        INTEGER
                        LDCOL
         CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                        I, J, N, ND, NNDS, NV UC(0:2)
        INTEGER
        REAL
        LOGICAL
                        TDFLAG
         -----Data unit conversion factor (ac-ft)
        UC(0) = 1.0

UC(1) = PERD * 86400.0 / 43560.0

UC(2) = PERD / 43560.0
       -----Read time-dependent target water demands from a file.
        TDFLAG = .FALSE.
```

```
IF (WSFIL) THEN
                                   READ (IU, '(A)', END = 50) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
TDFLAG = .TRUE.
          ENDIF
 50
          CONTINUE
       -----Create the target water demand arcs
          DO I = 1, NWSND
                                                         ELSE
                                                                               \mathbf{N} = 0
                                               IF (TDFLAG) THEN

IF (WSND(I, 3) .LT. 0) THEN

READ(COLSTR(NNDS), '(F10.0)') WSTB(0,I)

ELSE
                                                J = WSND(I, 3) + 1
READ (COLSTR(J), '(F10.0)') WSTB(0, I)
ENDIF
                                                                                ELSE
                                                                        WSTB(0, I) = 0.0
ENDIF
ENDIF
                                     NV = NINT(WSTB(N,I) * UC(WSND(I,2)) * XF)
CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP,
LDARC, ND, SKSC, NV, NV, 0, 6)
NDXAR(ND, 5) = NARC
CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP,
LDARC, SKSC, ND, 0, NV, MXCST*10, -6)
NDXAR(ND, 6) = NARC
          ENDDO
 99
          RETURN
          END
                                    _____
                        NVAR GET THE NET INFLOW TO THE ALL NODES AND CREATE THE NET FLOW ARCS
* Name:
  Purpose:
         SUBROUTINE NVAR(NNODS, NDNAM, NDTYP, NDSEQ, LDND,

NARCS, II, JJ, HI, LO, COST, ARTYP, LDARC,

MTH, IN_IFW, LAST, MXR,

INST, RC, SKSC,

NDXAR, PERD, XF,

NIFW, IFWND, LDIFW,

PTRE, LDRES, REAR, REZN, LDREAR,

NRCND, RCND, LDRC, RCTB, LDRCTB, RCFLAG, RCFIL,

IN RC,
        &
&
&
*
                                       IN_RC,
APRX, IOUT1,
RPOOL, LDPL, CTERM, COLSTR, LDCOL)
          IMPLICIT
                              NONE
                              LDARC, LDND, MXR, LDRCTB
          INTEGER
                              LI(LDARC), JJ(LDARC), HI(LDARC), LO(LDARC), COST(LDARC), ARTYP(LDARC), NNODS, SKSC, NARCS, IOUT1
          INTEGER
          INTEGER
                              RC(MXR)
APRX, INST(MXR)
          REAL
          REAL
LOGICAL
                              APRX,
                              LAST
                             LAST
NDNAM(LDND)*(*)
NDTYP(LDND), NDSEQ(LDND), NDXAR(LDND, 6)
MTH, IN_IFW, RES
NIFW, LDIFW, IFWND(LDIFW, 3)
LDRES, PTRE(LDRES), LDREAR, REAR(LDREAR)
REZN(LDREAR)
NRCND, LDRC, RCND(LDRC), IN_RC
RCTB(0:LDRCTB, LDRC)
RCFILAG, RCFIL
          CHARACTER
          INTEGER
          INTEGER
          INTEGER
          INTEGER
          REAL
          INTEGER
          REAL
          LOGICAL
                              RCFLAG, RCFIL
          INTEGER
                             RPOOL(LDPL)
CTERM*(*), COLSTR(LDCOL)*(*)
          REAL
          CHARACTER
          LOGICAL
                              ĎEBUG
                              PERD, XF
          REAL
          REAL
                              NVS
          INTEGER
INTEGER
                             NV
I, J, K, L, NNDS
UC(0:2)
          DEBUG = .FALSE.
LAST = .FALSE.
                     read Incremental inflow to each node for current time step.
          DO I = 1, NNODS
                                                                    RPOOL(I) = 0.0
          ENDDO
          UC(0) = 1.0

UC(1) = PERD * 86400.0 / 43560.0

UC(2) = PERD / 43560.0
```

```
READ (IN_IFW, '(A)', END = 50) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
           DO I = 1. NIFW
                                                      IF (IFWND(I, 3) .GT. 0) THEN
J = IFWND(I, 3) + 1
READ (COLSTR(J), '(F10.0)') RPOOL(IFWND(I,1))
ELSE IF (IFWND(I, 3) .LT. 0) THEN
EAD (COLSTR(NNDS), '(F10.0)') RPOOL(IFWND(I,1))
ENDIF
                                       RPOOL(IFWND(I,1)) = RPOOL(IFWND(I,1)) * UC(IFWND(I, 2))
           ENDDO
            -----Modify the rule cure
50
            CONTINUE
           IF (RCFLAG) THEN
                                              CALL RC_ARC(NDNAM, NDSEQ, LDND, HI, LDARC, PTRE, RC, LDRES, REAR, REZN, LDREAR, NRCND, RCND, LDRC, RCTB, LDRCTB, RCFIL, MTH, XF, IN_RC, CTERM, COLSTR, LDCOL)
           ENDIF
            -----Create the NV arcs
           DO 60 K = 1, NNODS
IF (NDTYP(K) .EQ. 1) THEN
                                                   1) THEN

RES = NDSEQ(K)

NVS = (INST(RES) + RPOOL(K) - RC(RES)) * XF

IF (NVS .GT. 0.) THEN

NV = NVS + APRX

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, SKSC, K, NV, NV, 0, 3)

NDXAR(K, 1) = NARCS

ELSE IF (NVS .LT. 0.) THEN

NV = NVS - APRX

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP,

LDARC, K, SKSC, -NV, -NV, 0, -3)

NDXAR(K, 1) = -NARCS

ENDIF

.EO. 2) THEN
         &
           ELSE IF (NDTYP(K) . EQ. 2) THEN
                                                   .EQ. 2) THEN

NVS = RPOOL(K) * XF

IF (NVS .GT. 0.) THEN

NV = NVS + APRX

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, SKSC, K, NV, NV, 0, 7)

NDXAR(K, 1) = NARCS

ELSE IF (NVS .LT. 0.) THEN

NV = NVS - APRX

CALL ARCVAL(NARCS, II, JJ, LO, HI, COST, ARTYP, LDARC, K, SKSC, -NV, -NV, 0, -7)

NDXAR(K, 1) = -NARCS

ENDIF
         8
          ENDIF

CONTINUE

IF (.NOT. DEBUG) GO TO 70

WRITE (IOUT1, 850)

WRITE (IOUT1, 860)

DO 63 L = 1, NARCS

WRITE (IOUT1, 870) L, II(L), JJ(L), LO(L), HI(L), COST(L)
60
65
70
          RETURN
FORMAT (5X, '--DEBUG FOR NVAR--', ///)
FORMAT (10X, 'ARCS', 4X, 'II', 5X, 'JJ', 5X, 'LO BOND',
5X, 'HI BOND', 10X, 'COST', 5X, 'FLOW', //)
FORMAT (11X, I2, 5X, I2, 5X, I2, 4X, I10, 3X, I10, 5X, I6, 8X, I2)
860
                          fx_fil
 Name:
                             Open a fixed flow data file for some arcs.
          SUBROUTINE FX_FIL(NDNAM, LDND, II, JJ, ARTYP, LDARC,
PTDWAR, LDPTDW, DWAR, LDDWAR,
NFXAR, FXAR, LDFXAR,
FXUNIT, UNITNM, LDUNIT, FXFLAG,
FILNAM, NTLS, IU, OU,
CTERM, COLSTR, LDCOL)
        &
         &
           IMPLICIT
                                    NONE
                                    LDND, LDARC, II(LDARC), JJ(LDARC), ARTYP(LDARC)
LDPTDW, LDDWAR, PTDWAR(LDPTDW, 2), DWAR(LDDWAR)
NFXAR, LDFXAR, FXAR(0:2, LDFXAR), FXUNIT, IU, OU
LDUNIT, NTLS
           INTEGER
           INTEGER
           INTEGER
                                    NDNAM(LDND)*(*), UNITNM(0:LDUNIT)*(*), FILNAM*(*)
           CHARACTER
           INTEGER
                                    LDCOL
           CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                                    I, J, K, L, ND, ND1, ND2, I1, I2, ISGN ZONE, ARC, ARC1, TYP, NREC, SL ERR, STRM
           INTEGER
           INTEGER
           LOGICAL
```

```
INTEGER
                         SAVOPT
/SAVOPT/ SAVOPT
         FXFLAG = .FALSE.
IF (FILNAM .EQ. ' ') GOTO 99
CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER FIXED FLOW FILE: ')
       -----Skip title lines
        NFXAR = 0
DO I = 1, NTLS
                                                             READ (IU, \star, END = 99)
         ENDDO
    -----Flow units
         READ (IU, \star, END = 99) FXUNIT
    -----Read upstream and downstream nodal names
         DO I = 1, 2
                         READ (IU, '(A)', END = 99) CTERM

CALL STR_DIVD(CTERM, L, COLSTR, LDCOL, 0, ',')

DO J = I, L

CALL NAMNUM(LDND, NDNAM, COLSTR(J), ND, 0, ERR)

IF (ERR) THEN

WRITE(*, 901) COLSTR(J), FILNAM

FORMAT( '***ERROR***NODAL NAME: ', A12,
' IN THE FILE: ',A,
/, ' NOT FOUND IN THE NETWORK CONFIGURATION.')

STOP !CALL EXIT
901
       &
                                                                         STOP !CALL EXIT
                                                                     FXAR(I, J-I+1) = ND
ENDIF
ENDDO
NFXAR = L - 1
         ENDDO
  -----Find corresponding arc number.
         DO 50 J = 1, NFXAR
                                                                ND1 = FXAR(1, J)

ND2 = FXAR(2, J)

I1 = PTDWAR(ND1, 1)

I2 = PTDWAR(ND1, 2)

DO 20 I = I1, I2

ARC = DWAR(I)
  -----Arc type
                                                   TYP = ARTYP(ABS(ARC))
WRITE(CTERM, '(14)') TYP
IF (CTERM(2:2) .NE. '1') THEN
PRINT *, '** ERROR ** INVALID ARC TYPE'
GOTO 99
ENDIF
                                                          IF (CTERM(3:3) .EQ. '1'
STRM = .TRUE.
ELSE
STRM = .FALSE.
                                                                                              '1') THEN
                                                         STRM = .FALSE.
ENDIF
READ (CTERM(4:4), '(11)') ZONE
ZONE = ISGN(TYP) * ZONE
    -----Downstream node
                                                                  ARC1 = ARC

IF (STRM) THEN

ARC = ARC + ISGN(ARC)

ENDIF

IF (ARC .GT. 0) THEN

ND = JJ(ARC)

ELSE

ND = II(-ARC)

ENDIF
                                                                                ENDIF
    -----check the current downstream node
                                                                 IF (ND .EQ. ND2) THEN
FXAR(0, J) = ARC1
GOTO 50
ENDIF
20
              CONTINUE
         CONTINUE
         FXFLAG = .TRUE.
       -----output file information
         IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

CALL NORECS(IU, NREC)

WRITE (OU, 800) FILNAM, UNITNM(FXUNIT), NFXAR, NREC
              FORMAT ( //, 'SUMMARY FOR FIXED-FLOW DATA FILE: ',
800
```

```
/, 12X,
/, 12X,
/, 12X,
/, 12Y
                                                NAME: ', A
JNITS: ', A
NODES: ', I4,
CORDS: ', I4)
DO J = 1, NFXAR, 5
K = J + 4
IF ((J+4) .GT. NFXAR) THEN
                                         FILE NAME:
                                              UNITS:
                                NUMBER OF NODES:
                             NUMBER OF RECORDS:
                                                              K
                                                                 = NFXAR
                                                                ELSE
                                                              K = J + 4
                                                               ENDIF
                       WRITE (OU, 805) (NDNAM(FXAR(1, I))(1:SL(NDNAM(FXAR(1, I)))),
      &
                       805
                FORMAT
                FORMAT ('FORMAT ('FORMAT ('
806
808
                                                          ARC NUMBER:
ENDDO
       ENDIF
99
       CONTINUE
       RETURN
       END
 Name:
                   fixflw
 Purpose:
                   Read fixed flows and assign these flows into arc flow
                   bounds.
       SUBROUTINE FX_ARC(HI, LO, COST, LDARC, NFXAR, FXAR, LDFXAR, FXUNIT, XF, PERD, IU, RPOOL, LDPL, CTERM, COLSTR, LDCOL)
       IMPLICIT
                       NONE
                       LDARC, HI(LDARC), LO(LDARC), COST(LDARC)
NFXAR, LDFXAR, FXAR(0:2, LDFXAR), FXUNIT, IU
       INTEGER
       REAL
                       XF, PERD
                      LDCOL, LDPL
RPOOL(LDPL)
CTERM*(*), COLSTR(LDCOL)*(*)
       INTEGER
       CHARACTER
                       I, J, ARC
       INTEGER
       DO I = 1, NFXAR
                                                      RPOOL(I) = 0.0
       ENDDO
       READ (IU, '(A)', END = 99) CTERM
CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')
IF (I .NE. (NFXAR + 1) ) THEN
                    PRINT *, CHAR(7)

PRINT *, '***ERROR*** FIXED FLOW FILE FOR TIME = ', COLSTR(1)

STOP !CALL EXIT
       ENDIF
       IF (FXUNIT .EQ. 0) THEN
                                                          UC = 1.0
       ELSE IF (FXUNIT .EQ. 1) THEN
                                                = PERD * 86400.0 / 43560.0
       ELSE IF (FXUNIT .EQ. 2) THEN
                                                  UC = PERD / 43560.0
       ENDIF
       DO I = 1, NFXAR
                                     READ (COLSTR(I+1), '(F15.0)') RPOOL(I)
       ENDDO
       DO J = 1, NFXAR
                                       ARC = FXAR(0, J)
COST(ARC) = 0
HI(ARC) = NINT(RPOOL(J) * UC * XF)
LO(ARC) = NINT(RPOOL(J) * UC * XF)
       ENDDO
99
       RETURN
       END
                                ______
 Name:
                  sabl
                  Open files for single arc budget list.
       SUBROUTINE SABL(NDNAM, LDND, PTDWAR, II, JJ, NDDWAR, LDARC, NSTRM, STRMAR, LDSTRM, NSABL, SABLND, LDSABL, SABLFG,
     æ
                              FILNAM)
       IMPLICIT
                       NONE
                      NONE
LDND, LDARC, LDSTRM, LDSABL, NSABL
PTDWAR(LDND, 2), II(LDARC), JJ(LDARC),
NDDWAR(LDARC), NSTRM, STRMAR(LDSTRM, 0:6),
SABLND(LDSABL, 3)
NDNAM(LDND)*(*), FILNAM*(*)
SABLFG
! SABL -- SINGLE ARC BUDGET LIST.
       INTEGER
       INTEGER
       CHARACTER
       LOGICAL
                      CTERM*50, UPDW(2)*12, OUTFIL*12
I,_J, NL(2), L1, L2, ND, ARC, OU, IU
       CHARACTER
       INTEGER
```

LOGICAL

```
SABLFG = .FALSE.
IF (FILNAM .EQ. ' ') GOTO 99
SABLFG = .TRUE.
OUTFIL = 'arbud000.out'
         COALL IO OPFIL(IU, 1, FILNAM, 'ENTER SABL FILE: ')
 5
         CONTINUE
READ (IU, '(A)', END = 99) CTERM
NSABL = NSABL + 1
         CALL STR_DIVD(CTERM, I, UPDW, 2, 0, \',')
DO I = 1, 2
                                      CALL NAMNUM(LDND, NDNAM, UPDW(I), ND, 0, ERR)
IF (ERR) THEN
CALL BEEP
                                         PRINT *, '***ERROR*** NODAL NAME: ', UPDW(I),
N FILE: ', FILNAM
                                                         FILNAM
PRINT *, ' IS NOT DEFINED.'
STOP !CALL EXIT
                                     IN FILE:
                                                       PRINT *,
                                                                       ENDIF
                                                          SABLND(NSABL, I) = ND
         ENDDO
*----check whether the arc exists.
         L1 = PTDWAR(SABLND(NSABL, 1), 1)
L2 = PTDWAR(SABLND(NSABL, 1), 2)
DO I = L1, L2
                               ARC = NDDWAR(I)

IF (ARC .GT. 0) THEN

CALL FDWND(ARC, II, JJ, LDARC, NSTRM, STRMAR, LDSTRM, J)

IF (J .EQ. ND) GOTO 10
          ENDDO
          CALL BEEP
         CALL BEEP PRINT *, '***ERROR*** ARC FROM ', UPDW(1), ' TO ', UPDW(2) PRINT *, ' IS NOT FOUND IN THE NETWORK CONFIGURATION.' PRINT *, 'CHECK FILE: ', FILNAM STOP !CALL EXIT
 10
         ou = ou -
         OU - OU 1
SABLND(NSABL, 3) = OU
WRITE(OUTFIL(6:8), '(13.3)') NSABL
CALL IO_OPFIL(OU, 3, OUTFIL, '')
         CALL STR_LEN(UPDW(1), NL(1))
CALL STR_LEN(UPDW(2), NL(2))
WRITE (OU, 900) (NDNAM(SABLND(NSABL,I))(1:NL(I)), I = 1, 2),

('=', I = 1, 31+NL(1)+NL(2))
         WRITE (OU, 901)
GOTO 5
         CONTINUE
 900 FORMAT(/,T6, 'Canal water budgets from ', A, ' to ', A, & /,T6, 100A)
        FORMAT (
        & /, T6, '
& /, T6, '
& /, T6, '
                                                                              Water-
                                                                            surface
                                            Initial
                                                                                                Final'
                                                              Canal
                                                                              evapo-
                                            Outflow',
storage seepage
(cubic',
(acre- (acre-
        & /,T6,'
                            Inflow
                                                                              ration
                                                                                             storage',
                           Outflow (acre-
        & /,T6,'
                                                                              (acre-
                                                                                               (acre-',
                              (acre-
                                           feet per',
        & /,' No.',
& T6,'
                              feet)
                                              feet)
                                                               feet)
                                                                               feet)
                                                                                                feet)',
                                           second)',
                              feet)
*-----
                      Open files for selected nodal budget lists.
         SUBROUTINE SNBL(NNODS, NDNAM, LDND, II, JJ, LDARC,
PTDWAR, LDPTDW, NDDWAR, LDDWAR,
NSTRM, STRMAR, LDSTRM,
NSNBL, SNBLND, LDSNBL, SNBLFG, FILNAM)
        æ
         IMPLICIT
                            NONE
                           NONES, LDND, LDPTDW, LDDWAR, LDSTRM, LDSNBL
NDNAM(LDND)*(*), FILNAM*(*)
LDARC, II(LDARC), JJ(LDARC), PTDWAR(LDPTDW, 2),
NDDWAR(LDDWAR), NSTRM, STRMAR(LDSTRM, 0:6)
NSNBL, SNBLND(LDSNBL, 3)
SNBLFG
! SNBL -- SINGLE NODAL BUDGET LIST.
         INTEGER
         CHARACTER
         INTEGER
         INTEGER
         LOGICAL
                           NAME*12, OUTFIL*30
DWNDS(15), NDWNDS
I, J, L, ND, OU, IU, SL
         CHARACTER
         INTEGER
         INTEGER
         LOGICAL
```

```
SNBLFG = .FALSE.
IF (FILNAM .EQ. ' ') GOTO 99
SNBLFG = .TRUE.

IU = 9 \\
OU = 40

                          NSNBL = 0
                                             IO_OPFIL(IU, 1, FILNAM, 'ENTER SNBL FILE: ')
                          CONTINUE
                         CONTINUE
READ (IU, '(A)', END = 99) NAME
CALL NAMNUM(NNODS, NDNAM, NAME, ND, 0, ERR)
IF (.NOT. ERR) THEN
                                                                                                                                                                NSNBL = NSNBL + 1
*----Open budget output file
                                                                                                                             OU = OU + 1
OUTFIL = 'b'//NAME
CALL STR_LEN(OUTFIL, L)
OUTFIL = OUTFIL(1:L) / 'out'
CALL STR_CORS(OUTFIL, 0)
SNBLND(NSNBL, 1) = ND
SNBLND(NSNBL, 2) = OU
CALL IO_OPFIL(OU, 3, OUTFIL, 'write (OU, 900) NDNAM(ND)
        -----Open outflow file for a given node.
                                                              OU = OU + 1

SNBLND(NSNBL, 3) = OU

OUTFIL = 'r'//NAME

CALL STR_CORS(OUTFIL, 0)

CALL STR_LEN(OUTFIL, L)

OUTFIL = OUTFIL(1:L) // '.out'

CALL IO_OPFIL(OU, 3, OUTFIL, ')

WRITE(OU, 905) NDNAM(ND), L)

CALL FDWNDS(ND, II, JJ, LDARC, PTDWAR, LDDN, NDDWAR, LDDWAR, NSTRM, STRMAR, LDSTRM, NDWNDS, DWNDS)

WRITE(OU, 906) (NDNAM(DWNDS(I))(1:SL(NDNAM(DWNDS(I)))), I = 1, NDWNDS)

I = 1, NDWNDS)

I = 1, NDWNDS)

I = 1, NDWNDS)

I = 1, NDWNDS)

WRITE(OU, '(5x, 10(1x, 19a1))') (('-', J = 1, 19), I=1, NDWNDS)

WRITE(OU, '(5x, 10(10x, a10))') ('(cubic', I = 1, NDWNDS))

WRITE(OU, '(5x, 10(a10, a10))')

('(acre-', 'feet per', I = 1, NDWNDS)

WRITE(OU, '(a5, 20a10)') 'No.',

('feet)', 'second)', I = 1, NDWNDS)

WRITE(OU, '(45, 20a10)') '---',

('------', '------', I = 1, NDWNDS)
                    &
                                      FORMAT(/, 5X, 2
WRITE(OU,
    906
                     &
                         ENDIF
                         GOTO 5
   99
900
                          CONTINUE
                       FORMAT(/, T30, 'Wat
, T30, '===
                                                                                         'Water Budgets for ', A
                     & /,
& `
& `
                                                                T11, ' Initial Upstream Local net',
                                                    Evapo-
Final',
Tll, storage inflow inflow',
ration Runoff Seepage Withdrawal release
Tll, (acre- (acre- (acre-',
(acre- (acre- (acre- (acre-stage depth',
feet) feet) feet) feet) feet)

Feet feet) feet)
                                                   Evapo-
                                                                                                                                                                                                                Downstream
                                                                                                                                                                                                                                                                                   Final',
                                                                                                                                                                                                                                                                          storage',
                                                                                                                                                                                                                                                                               (acre-'
                                     (acre- (acre- (acre (acr
                             \ -----/)
                        FORMAT(/, T5, 'Outflows' from ', A, /, T5, 100A)
   905
                         RETURN
                                                                   * Name:
                                                          fdwnds
                       c: fdwnds
cose: Find all downstream nodes.

SUBROUTINE FDWNDS(ND, II, JJ, LDARC, PTDWAR, LDND, NDDWAR, LDDWAR,
NSTRM, STRMAR, LDSTRM, NDWNDS, DWNDS)
                         IMPLICIT
                                                                         NONE
                                                                        NONE,
ND,LDARC, LDND, LDDWAR, LDSTRM,
II(LDARC), JJ(LDARC),
PTDWAR(LDND, 2), NDDWAR(LDDWAR),
NSTRM, STRMAR(LDSTRM,0:6)
NDWNDS, DWNDS(15)
                     &
                        INTEGER
                                                                        I, J, K, I1, I2, ARC CNINT
                         INTEGER
                         LOGICAL
                        I1 = PTDWAR(ND, 1)
I2 = PTDWAR(ND, 2)
                        NDWNDS = 0
DO I = 1, 15
                                                                                                                                                                           DWNDS(I) = 0
```

DO I = I1, I2

```
ARC = NDDWAR(I)

IF (ARC .GT. 0) THEN

ARC, II, JJ, LDARC, NSTRM, STRMAR, LDSTRM, J)

(.NOT. CNINT(J, 15, DWNDS, K)) THEN

NDWNDS = NDWNDS + 1

DWNDS(NDWNDS) = J

FWNTTF
                              CALL FDWND(ARC,
                                                                      ENDIF
                                                                    ENDIF
         ENDDO
         RETURN
         END
* Name:
                     svinfo
  Purpose: Print the file save information on screen.
  Purpose:
         SUBROUTINE SVINFO(FILNAM, LDFIL, NHY, NSNBL, NSABL, NDBFLG, ARBFLG, HYBFLG)
         IMPLICIT
         INTEGER LDFIL, NHY, NSNBL, NSABL CHARACTER*(*) FILNAM(0:LDFIL)
LOGICAL NDBFLG, ARBFLG, HYBFLG
PRINT '(A)', CHAR(7)
WRITE(*, 901) FILNAM(26)
         IF (NDBFLG) THEN
                                         WRITE (*, '(5X, A20, A)') FILNAM(27),
':Nodal budget summary for each time step.'
         ENDIF
         IF (ARBFLG) THEN
                                          ENDIF
         ENDIF
IF (NHY .GT. 0 .AND. HYBFLG) THEN
WRITE(*, 902) FILNAM(29)
         IF (NSNBL .GE. 1) THEN
                                                   WRITE(*, 904) NSNBL, NSNBL
         ENDIF
         IF (NSABL .EQ. 1) THEN
                                                             WRITE(*, 905)
         ELSE IF (NSABL .GT. 1) THEN
                                                        WRITE(*, 906) NSABL
         ENDIF
         RETURN
 901
         FORMAT( Summary of output files: '
          /, 5X, 'File name', T26, 'Description', /, 5X, '----', T26, '----', 5X, A20, ':General data file summary and network ', 'configuration.')
 902
         FORMAT (
        FORMAT(
1 5X, A20, ':Flows through outlet structure')
FORMAT(' There are ', I3, ' nodal budget files in time series ',
5 /, ' format with name convention bNDNAME.out.',
6 /, ' There are ', I3, ' outflow files in time series',
7 format with the name convention rNDNAME.out.')
       1
 904
 905
        FORMAT(
                 5X, 'arbud001.out', T26, ':Channel routing in time series ',
'format for a selected arc')
       1
 906
         FORMAT (
          END
                                        SUBROUTINE BEEP PRINT '(A)', CHAR(7)
         RETURN
         END
                     io_opfil
* Name:
  Purpose:
                     Open a file
        SUBROUTINE IO_OPFIL(UNIT, INOUT, FILNAM, STRING)
IMPLICIT NONE
INTEGER UNIT, INOUT, IOS, I, J, LENGTH
CHARACTER *(*) FILNAM, STRING
CHARACTER STATS*7, ACCES*10, FIL_NAM2*100
LOGICAL YES
IF (LEN(FILNAM) .LE. 100) THEN
                                                          FIL_NAM2 = FILNAM
LENGTH = 100
         END IF
                  open data file
         STATS = 'UNKNOWN'
ACCES = 'SEQUENTIAL'
         IF (INOUT .EQ. 1) THEN
                                                             STATS = 'OLD'
         ELSE IF (INOUT .EQ. 2) THEN
                                                             STATS = 'NEW'
         ELSE IF (INOUT . EQ. 4) THEN
                                                          STATS = 'SCRATCH'
```

```
ELSE IF (INOUT .EQ. 6) THEN
                                                         ACCES = 'APPEND'
         END IF
         IF (FIL_NAM2(1:1) .NE. ' ') GO TO 10 IF (STRING .NE. ' ') THEN
                                                          PRINT *, STRING
         ELSE
                                         IF (INOUT .EQ. 1) THEN
PRINT *, 'ENTER INPUT DATA FILE NAME: '
ELSE IF (INOUT .EQ. 2) THEN
PRINT *, 'ENTER OUTPUT FILE NAME: '
ELSE
PRINT *, 'ENTER SCRATCH FILE NAME: '
END IF
         END IF
READ '(A)', FIL_NAM2
IF (FIL_NAM2(1:1) .EQ. CHAR(27)) THEN
         ENDIF
         DO 3 I = 1, LENGTH
                                          IF (FIL_NAM2(I:I) .NE. ' ') GO TO 4
         PRINT *, '***** ILLEGAL FILE NAME ***** ZERO LENGTH FILE NAME' GO TO 2
 3
         CONTINUE
         IF ((I-1) .EQ. 0) THEN
                                                               GO TO 10
         ELSE
                                             DO 5 J = 1, LENGTH
IF (J .LE. (LENGTH-I+1)) THEN
FIL_NAM2(J:J) = FIL_NAM2(J+I-1:J+I-1)
ELSE
                                                           FIL_NAM2(J:J) = ' '
END IF
 5
             CONTINUE
         END IF
         OPEN (UNIT, FILE = FIL_NAM2, STATUS = STATS, IOSTAT = IOS,
10
         ACCESS = ACCES)
IF (IOS .NE. 0) THEN
                                         PRINT *, CHAR(7)

IF (INOUT .EQ. 1) THEN

`*****ERROR****** FILE DOES NOT EXIST. FILE: `,
                           PRINT *, `******ERROR***** FILE DOES NOT EXIST. FILE: `,
FIL NAM2
PRINT *, ` PLEASE TYPE ANY KEY TO TRY AGAIN OR TYPE CTR-C',
`QUIT'
       &
        æ
                           READ '(A)'
GO TO 2
ELSE IF (INOUT .EQ. 2) THEN
PRINT *, '****WARNING***** THERE ALREADY EXISTS FILE:',
                                   *, '****WARNING

FIL_NAM2

PRINT *, ' DO YOU WANT TO OVERWRITE IT? (Y) '

IF (YES()) THEN

STATS = 'UNKNOWN'

GO TO 10

FIGE
       &
                                                                    ELSE
                                                                  GO TO 2
END IF
                                                                END IF
        END IF IF (LEN(FILNAM) .GT. 6) THEN
                                                        FILNAM = FIL_NAM2
        ENDIF
         RETURN
Name:
                     Yes
                    Response yes or no from keyboard.
         LOGICAL FUNCTION YES()
IMPLICIT NONE
CHARACTER YESNO*1
         YES = .FALSE.
         YESNO = ' '
READ '(A)', YESNO
IF (YESNO .EQ. 'Y'
 5
                                    .OR. YESNO .EQ. 'y' .OR. YESNO .EQ. '') THEN YES = .TRUE.
        GO TO 10
ELSE IF (YESNO .EQ. 'N' .OR. YESNO .EQ. 'n') THEN
YES = FALSE.
                                                               GO TO 10
        FLSE
                                                        PRINT *, CHAR(7)
GO TO 5
         END IF
 10
        RETURN
* Name:
         ose: Response no or yes from keyboard.
  Purpose:
        LOGICAL FUNCTION NO()
IMPLICIT NONE
CHARACTER YESNO*1
```

```
NO = .FALSE.
      YESNO = ' '
READ '(A)', YESNO
IF (YESNO .EQ. 'N' .OR. YESNO .EQ. 'n' .OR. YESNO .EQ. ' ') THEN
NO = .TRUE.
GO TO 10
ELSE IF (YESNO .EQ. 'Y'..OR. YESNO .EQ. 'y') THEN
NO = .FALSE.
GO TO 10
5
       ELSE
                                              PRINT *, CHAR(7)
GO TO 5
       END IF
10
       RETURN
       END
                                _______
* Name:
                io_rdint
* Purpose:
                assign a default value or read an integer value
       SUBROUTINE IO_RDINT(STRING, DEFVAL, VAR)
       IMPLICIT
                    NONE
       INTEGER DEFVAL, VAR, W, L
CHARACTER STRING*(*), TERM*10, FMT * 30
       REAL
                    TINY
                    TINY/1E-3/
       DATA
       FMT = (1X,A,A,I ,A)'
GOTO 10
       CONTINUE
PRINT *, '***ERROR*** ONLY INTERGER NUMBER IS VALID. TRY AGAIN.'
5
       PRINT *, ****ERROR O) THEN

IF (ABS(DEFVAL) .GT. 0) THEN

W = INT( LOG10(ABS(DEFVAL)+TINY) )+ 1
10
       ELSE
       ENDIF
       IF (W .GE. 10) THEN
                                       WRITE(FMT(10:11), '(12)') W
       ELSE
                                       WRITE(FMT(10:10), '(I1)') W
       ENDIF
      CALL STR_LEN(STRING, L)
WRITE (*, FMT) STRING(1:L), '(', DEFVAL, ')'
READ '(A)', TERM
IF (TERM .EQ. ' ') THEN
                                                VAR = DEFVAL
       ELSE
                                   READ (TERM, '(110)', ERR = 5) VAR
       ENDIF
       RETURN
Name:
                io rdnum
  purpose:
                 Assign a default value or read an real value
                                                       ______
       SUBROUTINE IO_RDNUM(STRING, DEFVAL, VAR, D)
                      NONE
       IMPLICIT
                     DEFVAL, VAR
W, D
STRING*(*), TERM*20, FMT * 30
       REAL
       INTEGER
       CHARACTER
       REAL
DATA
                      TINY
TINY/1E-10/
       FMT = '(1X,A,A,F , A)'
IF (ABS(DEFVAL) .GT. TINY) THEN
                                        = INT( LOG10(ABS(DEFVAL)) )

IF (W .GT. 0) THEN

W = W + D + 3
                                                     ELSE W = 3 + D
                                                     ENDIF
                               IF (W .LT. 10) THEN
WRITE(FMT(10:12), '(11, A1, I1)') W, '.', D
ELSE
                               WRITE(FMT(10:13), '(12, A1, I1)') W, '.', D
       ELSE
                            WRITE(FMT(10:12), '(I1, A1, I1)') D+3, '.', D
       ENDIF
       CONTINUE
       WRITE (*, FMT) STRING, '(', DEFVAL, ')'
READ '(A)', TERM
IF (TERM .EQ. ' ') THEN
                                                VAR = DEFVAL
       ELSE
                                  READ (TERM, '(F15.0)', ERR = 5) VAR
       ENDIF
       RETURN
       END
* Name:
                str_len
* Purpose:
                 Find the ending position of a character string
```

```
SUBROUTINE STR_LEN(STRING, STRLEN)
      IMPLICIT
                 NONE
      CHARACTER STRING*(*)
      INTEGER
                  STRLEN
      IF (STRING .EQ. ' ') THEN
                                             STRLEN = 0
                           STRLEN = LEN(STRING)
DO WHILE (STRING(STRLEN:STRLEN) .EQ. ' ')
STRLEN = STRLEN - 1
      ENDIF
      RETURN
                              str_divd
Divide a string into substrings with multiple
* Name:
 purpose:
* delimitors.
      SUBROUTINE STR_DIVD(STRING, NOCOL, COLSTR, LDCOL, IALIGN, DELIM)
IMPLICIT NONE
INTEGER LDCOL, NOCOL, IALIGN
CHARACTER STRING*(*), COLSTR(LDCOL)*(*), DELIM*(*)
                  DLIM(15)*1
STRING_LEN, COLSTR_LEN, I, J, K, L, NODLIM
ISDLIM
      CHARACTER
      INTEGER
      LOGICAL
           Find the no. of delimitors
      J = LEN(DELIM)
      DO I = \dot{J}, 1,
                                 IF (DELIM(I:I) .NE. ' ') GOTO 5
      ENDDO
      NODLIM = I
DO I = 1, NODLIM
                                       DLIM(I) = DELIM(I:I)
          Find the main string defined length and output substring length
      DO I = 1, LDCOL
                                          COLSTR(I) = ''
      END DO
STRING_LEN = LEN(STRING)
COLSTR_LEN = LEN(COLSTR(1))
NOCOL = 0
          Find the end position of the input main string
      I = STRING_LEN
      DO WHILE(STRING(I:I) .EQ. ' ')
                                             I = I - 1
      END DO
      IF (I .EQ. 1) THEN
                                  IF (STRING(1:1) .NE. ' ')THEN
     NOCOL = 1
     COLSTR(1) = STRING(1:1)
     ENDIF
                                             GO TO 99
      ELSE
                                          STRING_LEN = I
      END IF
           Find the beginning position of a substring
  10 CONTINUE
     I = J+1
CONTINUE
11
      IF (I .GT. STRING_LEN) GO TO 99
DO L = 1, NODLIM
                               ENDIF
      ENDDO
      do while(string(i:i) .eq. ' ')
    i = i + 1
       enddo
               Find end position of a substring
     J = I + 1
NOCOL = NOCOL + 1
     J = J + 1
      ENDDO
 20
     J = J - 1
```

```
assign the substring to an associated array
       COLSTR(NOCOL) = ' '
IF (IALIGN .EQ. 1) THEN
                                K = J - I + 1
K = (COLSTR_LEN - K) / 2
IF (K .EQ. 0) K = 1
COLSTR(NOCOL)(K:(J-I)+K) = STRING(I:J)
       ELSE IF (IALIGN .EQ. 2) THEN
                              K = COLSTR_LEN - (J - I)
COLSTR(NOCOL)(K:COLSTR_LEN) = STRING(I:J)
       ELSE
                                       COLSTR(NOCOL) = STRING(I:J)
       ENDIF
       J = J +
GO TO 10
       CONTINUE
       RETURN
       END
       LOGICAL FUNCTION ISDLIM(CH, NDLIM, DLIM)
       IMPLICIT NONE
INTEGER NDLIM
       CHARACTER*1 CH, DLIM(NDLIM)
       INTEGER I
       ISDLIM = .FALSE.
       DO I = 1, NDLIM
                                         \begin{array}{cccc} \text{IF (CH .EQ. DLIM(I)) THEN} \\ & \text{ISDLIM = .TRUE.} \\ & \text{RETURN} \end{array} 
                                                     ENDIF
       ENDDO
       RETURN
       END
       io_rdstr
* Name:
* Purpose:
                Assign a default string or read an new string
       SUBROUTINE IO_RDSTR(STRING, VAR)
       IMPLICIT NONE
CHARACTER STRING*(*), VAR*(*), TERM*150
                    SL, VL, TL
       INTEGER
       CALL STR_LEN(STRING, SL) IF (VAR .EQ. ' ') THEN
                                          PRINT *, STRING(1:SL)
       FLSE
                            CALL STR_LEN(VAR, VL)
PRINT *, STRING(1:SL), '(', VAR(1:VL), ')'
       ENDIF
READ '(A)', TERM
IF (TERM .NE. ' ') THEN
                                          CALL STR_LEN(TERM, TL)
                                              VAR = TERM(1:TL)
       ENDIF
       RETURN
       END
* Name:
                Check whether a substring is contained in a string
       LOGICAL FUNCTION CN(STRING, SUBSTR, CODE)
       IMPLICIT NONE
CHARACTER STRING*(*), SUBSTR*(*)
INTEGER CODE
                    \tilde{J1}, J2, K1, K2
       INTEGER
       CHARACTER RTERM * 150, KEY * 150
      CN = .FALSE.
RTERM = STRING
KEY = SUBSTR
IF (CODE .NE. 0) THEN
                                         CALL STR_CORS(RTERM, 0)
CALL STR_CORS(KEY, 0)
       ENDIF
      CALL STR_POS(RTERM, J1, J2)
CALL STR_POS(KEY, K1, K2)
IF (KEY(K1:K2) .EQ. RTERM(J1:J2)) THEN
                                                 CN = TRUE
       ENDIF
       RETURN
       END
                           str_pos
Find the beginning and end postion of a string
* Nname:
       SUBROUTINE STR_POS(STRING, IPT1, IPT2)
       IMPLICIT NONE
CHARACTER * (*) STRING
INTEGER IPT1, IPT2
```

```
INTEGER I
        IPT2 = LEN(STRING)
DO I = IPT2, 1, -1
                                      IF (STRING(I:I) .NE. ' ') GO TO 5
        END DO
IPT2 = I
DO I = 1, IPT2
                                      IF (STRING(I:I) .NE. ' ') GO TO 10
        END DO
IPT1 = I
RETURN
 10
        END
                 str_cors
                 convert a string into capital latter or small latters.
        SUBROUTINE STR_CORS(CLINE, ICTR)
       IMPLICIT NONE
CHARACTER CLINE*(*)
INTEGER ICTR, CODE, L, I
        CALL STR_LEN(CLINE, L)
       DO I = 1, L
                               CODE = ICHAR(CLINE(I:I))
IF (ICTR .EQ. 0) THEN
IF ((CODE .GE. 65) .AND. (CODE .LE. 90)) THEN
CLINE(I:I) = CHAR(CODE+32)
ENDIF
                              ENDIF

ELSE IF (ICTR. EQ. 1) THEN

IF ( (CODE .GE. 97) .AND. (CODE .LE. 122) ) THEN

CLINE(I:I) = CHAR(CODE-32)

ENDIF
                                                         ENDIF
       ENDDO
       RETURN
       END
* Name:
                  Reture the number of substrings with multiple deliminators
       SUBROUTINE STR_NO(STRING, NOSUB, DELIM)
       SUBROUTING SIR_NO(SIRING, NOSOS, SEINMPLICIT NONE
INTEGER NOSUB
CHARACTER*(*) STRING, DELIM
CHARACTER * 1 DLIM(15)
INTEGER STRING_LEN, I, J, L, NODLIM
              Initialize
       NOSUB = 0
              Find the no. of delimitors
       J = \underset{\tau}{\text{LEN(DELIM)}}
       DO I = \dot{J}, 1,
                                        IF (DELIM(I:I) .NE. ' ') GOTO 5
       ENDDO
       NODLIM = I
DO I = 1, NODLIM
                                               DLIM(I) = DELIM(I:I)
       ENDDO
            Find the defined length for main string
       STRING_LEN = LEN(STRING)
            Find the true length of the input main string
       I = STRING_LEN
       DO WHILE (STRING(I:I) .EQ. ' ')
                                                      I = I - 1
       IF (I .EQ. 1) THEN
                                         IF (STRING(1:1) .NE. ' ')THEN
                                                        NOSUB = 1
ELSE
                                                        NOSUB = 0
                                                       GO TO 99
       ELSE
                                                   STRING LEN = I
       END IF
              find the beginning position of a substring
       CONTINUE
IF (I .GT. STRING_LEN) GO TO 99
IF (STRING(I:I) .EQ. ' ') THEN
15
```

I = I + 1

GOTO 15 ELSE DO L = 1, NODLIM

IF (STRING(I:I) .EQ. DLIM(L)) THEN

I = I + 1

GOTO 15 ENDIF ENDDO ENDIF find end position of a substring J = I + 1 NOSUB = NOSUB + 1 DO WHILE (J .LE. STRING_LEN) G_LEN)

DO L = 1, NODLIM

IF (STRING(J:J) .EQ. DLIM(L)) GOTO 10

ENDDO

J = J + 1 **ENDDO** 99 RETURN END FUNCTION ISGN (NUM)
IMPLICIT NONE
INTEGER ISGN, NUM IF (NUM .GT. 0) THEN TSGN = 1ELSE IF (NUM .LT. 0) THEN ISGN = -1ELSE ISGN = 0ENDIF RETURN END Purpose: check file status. LOGICAL FUNCTION EXIST(FILNAM)
IMPLICIT NONE
CHARACTER FILNAM*(*) INQUIRE (FILE = FÌLNAM, EXIST = EXIST) RETURN END FUNCTION SL(STRING)
IMPLICIT NONE
CHARACTER STRING*(*) INTEGER IF (STRING .EQ. ' ') THEN SL = 0ELSE SL = LEN(STRING)
DO WHILE (STRING(SL:SL) .EQ. '')
SL = SL - 1 ENDDO ENDIF RETURN END hydr_dat Read hydraulic structure data. * Name: Purpose SUBROUTINE HYDR_DAT(NNODS, NDNAM, LDND, JJ, LDARC,

PTDWAR, LDPTDW, DWAR, LDDWAR,

NSTRM, STRMAR, LDSTRM,
NHYTP, HYTP, LDHYTP,
NHY, HYDIR, HYTPCD, HYDAT, LDHY,
FILNAM, NTLS, IN, OU, PARTNO,
TIMPLICIT NONE & æ & IMPLICIT NONE NONE
NNODS, LDND, LDARC, JJ(LDARC)
NDNAM(LDND)*(*)
LDPTDW, PTDWAR(LDPTDW, 2), LDDWAR, DWAR(LDDWAR)
NSTRM, LDSTRM, STRMAR(LDSTRM, 0:6)
NHY, LDHY
HYDIR(LDHY, 0:2)*(*)
HYDAT(LDHY, 0:1)
HYDAT(LDHY, 5)
(*) FILINAM CHARACTER INTEGER INTEGER INTEGER CHARACTER INTEGER REAL CHARACTER*(*) FILNAM
INTEGER NTLS, IN, OU, PARTNO CHARACTER CTERM*(*), COLSTR(LDCOL)*(*) I, J, N, K, IU, LIM1, LIM2, ND, ND2, UPND, DWND, ARC ERR, CN, FLAG INTEGER LOGICAL NHYTP, LDHYTP HYTP(0:LDHYTP)*(*) INTEGER CHARACTER

INTEGER

SAVOPT

```
COMMON
                                /SAVOPT/ SAVOPT
                 ------Assign hydraulic types
          NHYTP = 6
HYTP(0) = 'Sharp-crested weir'
          HYTP(2) = 'Gate spillway'
HYTP(3) = 'Sluice gate'
          HYTP(6) = 'Pipe
          IF (FILNAM .NE. ' ') THEN
                                                                              FLAG = .TRUE.

IU = 9

FILNAM, 'ENTER STRUCTURE FILE: ')
                                     CALL IO_OPFIL(IU, 1,
                                                                       DO I = 1, NTLS
READ (IU, *, END = 100)
ENDDO
                                  FLAG = .FALSE.

IU = IN

CTERM = ' '

DO WHILE (CTERM .EQ. ' ')

READ (IU, '(A)', END = 100) CTERM

ENDDO

CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')

READ (COLSTR(2), '(I2)') N

IF (CN(COLSTR(1), 'PART', 1) .AND. N .EQ. PARTNO) THEN

READ (IU, *) !SKIP THE VARIABLE LIST

ELSE

IF (CN(COLSTR(1), 'PART', 1) .AND. N .GT. PARTNO )THE

BACKSPACE(1)
          ELSE
                                                CN(COLSTR(1), 'PART', 1) .AND. N .GT. PARTNO )THEN
BACKSPACE(1)
GOTO 100
ENDIF
PRINT *, CHAR(7)
PRINT *, '***ERROR***ERROR IN STRUCTURE DATA'
STOP !CALL EXIT
ENDIF
                                                                                       ENDIF
          ENDIF
      -----Output title
          800
                FORMAT(//,
           ∕, т57,
        &
&
                                       Weir
                                                         Weir
           /, T57,
          /, Base or pipe or pipe Pipe- Pipe- ',
/, 'Structure F-node T-node Structure', T57,
'elevation diameter length friction entry loss',
/, 'name name type', T57,
'(feet) (feet) (feet) factor factor',
/, '--- T57,
                                       width
                                                         height
        &
&
          ENDIF
          -----Read data
          NHY = 0
5
          CONTINUE
          CONTINUE
READ (IU, '(A)', END = 100) CTERM
CALL STR_DIVD(CTERM, K, COLSTR, LDCOL, 0, ',')
IF (CN(COLSTR(1), 'FINISH', 1)) GOTO 100
IF (K, LT. 6) GOTO 999
NHY = NHY + 1
                                                     IF (J .LE. 3) THEN
READ(COLSTR(J), '(A)') HYDIR(NHY, J-1)
ELSE IF (J .EQ. 4) THEN
READ (COLSTR(J), '(115)') HYTPCD(NHY, 0)
ELSE
                                                   READ(COLSTR(J), '(F15.0)') HYDAT(NHY, J-4)
ENDIF
          ENDDO
          ENDOO

IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

WRITE (OU, 805) (HYDIR(NHY, J), J = 0, 2),

HYTP(HYTPCD(NHY, O)),

(HYDAT(NHY, J), J = 1, 5)

FORMAT(3A12, A20, 3F10.2, 2F10.5)
805
          ENDIF
GOTO 5
100
          CONTINUE
          IF (FLAG) CLOSE(IU)
                      Search the downstream arc for normal flow range.
          DO 30 I = 1, NHY
                                        CALL NAMNUM(LDND, NDNAM, HYDIR(I,1), UPND, 0, ERR)
CALL NAMNUM(LDND, NDNAM, HYDIR(I,2), DWND, 0, ERR)
LIM1 = PTDWAR(UPND, 1)
```

```
LIM2 = PTDWAR(UPND, 2)
DO J = LIM1, LIM2
ARC = IABS(DWAR(J))
ND = JJ(ARC)
THEN
PO V = 1 NCTRM
DO V = 1 NCTRM
                            IF (ND .GT. NNODS) THEN
                                                        DS) THEN : THE CURRENT ARC

DO K = 1, NSTRM

IF (ND .EQ. STRMAR(K, 0)) THEN

ND2 = JJ( IABS(STRMAR(K, 6));

IF (ND2 .EQ. DWND) THEN

HYTPCD(I, 1) = ARC

GOTO 30
                                                                                   ENDIF
                                                                                ENDIF
                                                             ENDIF
ENDOO
ELSE IF (ND .EQ. DWND) THEN
HYTPCD(I, 1) = ARC
GOTO 30
ENDIF
                                                                               ENDDO
          CONTINUE
 30
        RETURN
 999
                         hydr_hite
  Name:
                         Calculate gate opening height or sharp-crested weir height for a given discharge.
  Purpose:
          SUBROUTINE HYDR_HITE(
ARCBUD, LDARC,
                                               NHY, HYTPCD, HYDAT, HYOUT, LDHY, PERD, CONST, XF)
        &
           IMPLICIT
                               NONE
                              HYDAT(LDHY, 2), HYOUT(LDHY, 3)
PERD, CONST, XF
          INTEGER
INTEGER
           REAL
                              FLW, W, B, P, H1, HD, E, EPS N, TYP, ARC IFAULT
           REAL
          INTEGER
INTEGER
                               EPS/1.0E-10/
           DATA
                               CHECK
          LOGICAL
                               /CHECK/ CHECK
          COMMON
          DO 100 N = 1, NHY
                                                                   TYP = HYTPCD(N, 0)

ARC = HYTPCD(N, 1)
                                                                 IF (TYP .LE. 0) THEN GOTO 100
                                -Sharp-crested weir with fixed weir height,
It is no needed to calculate the weir height.
                                     ELSE IF (TYP .EQ. 1 .AND. HYDAT(N, 3) .GT. 0) THEN GOTO 100
         -----Fixed gate opening height, no need to calculate
                                 the gate opeing height.
                                 ELSE IF ((TYP .GE. 2 .AND. TYP .LE. 3) .AND. HYDAT(N,5) .GT. 0) THEN
        &
                                                                               GOTO 100
             -----Find downstream flows
                           FLW = ARCBUD(ARC, 1) / PERD / CONST / XF ! RELEASE RATE IN CFS HYOUT(N,1) = FLW
     -----Calculate gate opening height or sharp-crested weir height
                                                       \begin{array}{lll} \texttt{H1} &=& \texttt{HYOUT}(\texttt{N}, \texttt{2}) & \texttt{-} & \texttt{HYDAT}(\texttt{N}, \texttt{1}) \\ & \texttt{B} &=& \texttt{HYDAT}(\texttt{N}, \texttt{2}) \\ & \texttt{W} &=& \texttt{HYDAT}(\texttt{N}, \texttt{4}) \end{array}
                                   IF (ABS(FLW) LT. EPS) THEN

CONTINUE

ELSE IF (TYP .EQ. 1) THEN

CALL WEIRHITE(FLW, H1, 0.0, B, P, W, 0.0, TYP, IFAULT)

HYOUT(N,3) = P

ELSE IF (TYP .EQ. 2 .OR. TYP .EQ. 3) THEN

HD = HYDAT(N, 3)

CALL GATEHITE(FLW, H1, 0.0, B, E, HD, TYP, IFAULT)

HYOUT(N,3) = E

ENDIF
 100
        CONTINUE
          RETURN
          END
* Name:
                         hydr_prn
```

```
* Purpose:
                      Print the results for flow through structure.
         SUBROUTINE HYDR_PRN(HYTP, LDHYTP, NHY, HYDIR, HYTPCD, HYDAT, HYOUT, LDHY, NOP, HYBFLG, IOUT)
          IMPLICIT
                             NONE
                             NOME
LDHYTP, NHY, LDHY
HYTP(0:LDHYTP)*(*), HYDIR(LDHY, 0:2)*(*)
HYTPCD(LDHY, 0:1)
HYDAT(LDHY, 2), HYOUT(LDHY, 3)
NOP, IOUT
          CHARACTER
          INTEGER
          INTEGER
          LOGICAL
                             HYBFLG
          INTEGER
                             J, N
         IF (HYBFLG) THEN
                                             WRITE (IOUT, 900) NOP
DO N = 1, NHY
WRITE (IOUT, 901) (HYDIR(N, J), J = 0, 2),
HYTP(HYTPCD(N, 0)),
(HYDAT(N, J), J = 1, 2),
(HYOUT(N, J), J = 1, 3)
ENDDO
        ۶
         ENDIF
          RETURN
         FORMAT(/, 20X, 'Parameters for hydraulic structures: ', I3,
 900
       ,, 20X,
/, 20X,
& /, 20X,
&/,T61,'
                                    ' [-999.99, not flow under gate]',
                                                           not flow under gate]',
Discharge Upstream Gate-opening',
Coubic Water or weir ',
node', T41,'Structure',
feet per elevation height ',
name', T41,'type',
second) (feet) (feet)',
----', T41,'---',
-----', T41,'---',
5F10 2)
          T61, 'Base
/,'Structure
'eleva
                                      Upstream
                                              Weir
        & //Structure node node', & T61, 'elevation length feet per & //name name',
          /,'name
T61,'
/,'----
T61,'
                          (feet) (feet) second)
 901
         FORMAT(3A12, T41, A20, T61, 5F10.2)
         END
                        hydr_ofw
                        Or calculate overflow on weir or through pipe. Flows are dependent on ponds stages, and structure types and materials. In other words, flows through structures can not be
  Purpose:
                        controlled.
         SUBROUTINE HYDR_OFW(NDSEQ, LDND,
II, HI, LO, OHI, LDARC,
NHY, HYTPCD, HYDAT, HYOUT, LDHY,
OINST, LDRES,
PERD, CONST, XF, OU)
        &
         IMPLICIT
                             NONE
                            NONE
LDND, NDSEQ(LDND),
LDARC, II(LDARC), HI(LDARC), LO(LDARC)
OHI(LDARC)
NHY, LDHY, HYTPCD(LDHY, 0:1)
HYDAT(LDHY, 5), HYOUT(LDHY, 3)
         INTEGER
         INTEGER
         INTEGER
         REAL
         INTEGER
                             LDRES
                             OINST(LDRES), PERD, CONST, XF
         REAL.
         INTEGER
                            B, W, P, H1, ZVA(3), D, L, F, E, LOFLW, HIFLW, HD N, TYP, ARC, ND, RES, IFAULT GETZVA, CHECK NDNAM(300)*12
         REAL
         INTEGER
         LOGICAL
         CHARACTER
                             /NDNAME/NDNAM
         COMMON
         DO 100 N = 1, NHY
                                                               TYP = HYTPCD(N, 0)
ARC = HYTPCD(N, 1)
ND = II(ARC)
      -----Calculate upstream water depth
                                                   RES = NDSEQ(ND)
ZVA(2) = OINST(RES)
IF (GETZVA(ND, 2, ZVA, OU)) THEN
H1 = ZVA(1)
                                    ELSE
PRINT *, CHAR(7)
PRINT *, '***ERROR*** CONVERTING STORAGE: ', ZVA(2)
PRINT *,' INTO ITS ELEVATION FOR RESERVOIR: ', RES
STOP !CALL EXIT
                                                    ENDIF

HYOUT(N, 2) = H1

H1 = HYOUT(N, 2) - HYDAT(N, 1)
                      -Calculate the flow through the structure or the
                       maximum flow through the structures
                                                             IF (H1 .LE. 0.0) THEN
                       The water head is lower than the base elevation
```

```
LOFLW = 0.0
                                                             LOFLW = 0.0
HIFLW = 0.0
ELSE IF (TYP .EQ. 0) THEN
LOFLW = 0.0
HIFLW = OHI(ARC)
ELSE IF (TYP .EQ. 1) THEN
*-----1. Flow over sharp-crested weir
                                                     B = HYDAT(N, 2) !WEIR
P = HYDAT(N, 3) !WEIR
IF (P .LT. 0.0) THEN
                                                                                                 !WEIR LENGTH.
                                                                                                 !WEIR HEIGHT.
                          The weir height is to be determined. It is assumed that for given upstream water depth, the maximum flow over weir occurs when there is no weir, i.e. p = 0.
                                                                    IF (ABS(P) .GE. H1) THEN LOFLW = 0.0 ELSE
                                     CALL WEIRFLW(LOFLW, H1+P, 0.0, B, -P, 0.0, 0.0, TYP,
         &
                                                         IFAULT)
                                                                                     ENDIF
                                          CALL WEIRFLW(HIFLW, H1, 0.0, B, 0.0, 0.0, 0.0, TYP,
                                                  IFAULT)

ELSE IF (H1 .LT. P) THEN
         &
                            If the water level is lower than the top of the weir, no flow is over the weir.
                                                                                LOFLW = 0.0
HIFLW = 0.0
                                                                                   ELSE
                           The weir height is fixed. The flow over the weir is determined from the upstream level and weir height. Free outfall flow is assumed.
                                          CALL WEIRFLW(LOFLW, H1-P, 0.0, B, P, 0.0, 0.0, TYP,
         &
                                                    IFAULT)
                                   &
                                                                                 STOP
                                              ENDIF

HYOUT(N, 3) = P

ENDIF

ELSE IF (TYP .EQ. 2 .OR. TYP .EQ. 3) THEN
 -----2. Flow under gates on spillway or broad-crested weir
                                  B = HYDAT(N, 2) !WEIR LENGTH
P = HYDAT(N, 3) !WEIR HEIGHT
W = HYDAT(N, 4) !WEIR THICKNESS
E = HYDAT(N, 5) !GATE OPENING HEIGHT
IF (TYP .EQ. 2) THEN
HD = HYDAT(N, 3) !DESIGN WATER HEAD FOR SPILLWAY
ENDIF

IF (E .GT. 0) THEN
CALL GATEFLW(LOFLW, H1, 0.0, B, E, HD, TYP, IFAULT)
IF (IFAULT .EQ. 1) THEN !GATE OPENING TOO HIGH, WEIR FLOW.
CALL WEIRFLW(LOFLW, H1, 0.0, B, P, W, HD, TYP, IFAULT)
ELSE IF (IFAULT .EQ. 2) THEN
PRINT *, '**Error*** Invalid gate type for structure'
//' no: ', N
                                                 /// no: \, N
         &
                                                                                  STOP
                                                                            ENDIF
HIFLW = LOFLW
HYOUT(N, 3) = E
ELSE
        -----The maximum flow under gate on spillway or broad-crested weir is the same as the flow over weir without gates under
                         the same water head.
                                                                               LOFLW = 0.0
                                       CALL WEIRFLW(HIFLW, H1, 0.0, B, P, W, HD, TYP, IFAULT)
ENDIF
                                                             ELSE IF (TYP .EQ. 6) THEN
     -----Flow through a short pipe
                                             D = HYDAT(N, 2)

L = HYDAT(N, 3)

F = HYDAT(N, 4)

E = HYDAT(N, 5)

CALL PIPE_FLW(0, LOFLW, H1, D, L, F, E, 0.0)

HIFLW = LOFLW
                                                                                ENDIF
                                              HYOUT(N,1) = LOFLW !IN CFS
LO(ARC) = NINT(LOFLW * PERD * CONST * XF)
HI(ARC) = NINT(HIFLW * PERD * CONST * XF)
```

```
100 CONTINUE
        RETURN
        END
* Name:
                   resev dat
                   Get seasonal reservoir surface water evaporation coefficient.
SUBROUTINE RESEV_DAT(NNODS, NDNAM, LDND, NEV, EVND, LDEV,
NPER, EVTB, LDEVTB, EVUNIT, EVFLAG,
FILNAM, NTLS, IN, OU, PN,
UNITNM, LDUNIT, CTERM, COLSTR, LDCOL)
        IMPLICIT
                        NONE
        INTEGER
                        NNODS, LDND, LDEVTB
        CHARACTER*(*) NDNAM(LDND), FILNAM
INTEGER NEV, LDEV, EVND(LDEV, 3), NPER, EVUNIT
INTEGER NTLS, IN, IU, OU, PN
REAL EVTB(0:LDEVTB, LDEV)
        REAL
LOGICAL
INTEGER
                        EVFLÀG
LDUNIT,
                                  LDCOL
        CHARACTER
                        UNITHM(0:LDUNIT)*(*), CTERM*(*), COLSTR(LDCOL)*(*)
        INTEGER
                        I, NREC
                        FLAG, ENDFIL
        LOGICAL
        EVFLAG = .FALSE.
       -----Open data file and skip title lines
        IF (FILNAM .NE. ' ') THEN
                    FLAG = .TRUE.

IU = 9

CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER SEASONAL EV DATA FILE: ')

DO I = 1, NTLS !SKIP TITLE LINES

READ (IU, *, END = 99)

ENDDO
        ELSE
                               ENDIF
                 ---Read units, nonal names, and data from a file and print these information into general output file.
       CALL DATTB(NNODS, NDNAM, LDND, NEV, EVND, LDEV, EVUNIT, NREC, EVTB, LDEVTB, EVFLAG, UNITNM, LDUNIT, FILNAM, IU, OU, PN, ENDFIL, 'water-surface evaporation coefficients', CTERM, COLSTR, LDCOL)
        IF (NREC .LT. NPER) THEN
            805
        ENDIF
        CONTINUE
        IF (FLAG) CLOSE(IU) RETURN
                              resev_arc
Read current evaporation coefficients and create
corresponding EV arcs.
 Name:
  Purpose:
       SUBROUTINE RESEV_ARC(NDTYP, NDSEQ, LDND,
NARC, II, JJ, LO, HI, COST, ARTYP, LDARC,
INST, LDRES,
NDXAR, LDXAR, NEV, EVND, LDEV, EVTB, LDEVTB,
MTH, SKSC, PERD, EVTIM, XF, IU,
CTERM, COLSTR, LDCOL)
      æ
      æ
        TMPLICIT
                       LDND, NDTYP(LDND), NDSEQ(LDND)
NARC, LDARC,
II(LDARC), JJ(LDARC), LO(LDARC), HI(LDARC),
COST(LDARC), ARTYP(LDARC)
LDRES
LDRES
        INTEGER
      &
        INTEGER
        REAL
                        INST (LDRES)
        INTEGER
                        LDXAR, NDXAR(LDXAR, 6)
NEV, LDEV, EVND(LDEV, 3), LDEVTB
EVTB(0:LDEVTB, LDEV), PERD, XF
        INTEGER
        REAL
        INTEGER
                        IU, MTH, SKSC
                        EVTIM
        LOGICAL
        INTEGER
                        LDCOL
       CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                       I, J, N, ND, NNDS, RES, NV ZVA(3), UC(0:2), RTERM GETZVA, TDFLAG
        INTEGER
        REAL
        LOGICAL
       -----Unit conversion factor (day * ft)
```

```
UC(0) = PERD / 304.8
UC(1) = PERD / 12.0
UC(2) = PERD
    -----Read current surface water evaporation coefficient
        TDFLAG = .FALSE. IF (EVTIM) THEN
                            READ (IU, '(A)', END = 50) CTERM
CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
TDFLAG = .TRUE.
        ENDIF
50
        CONTINUE
    ------Calculate the reservoir surface evaporation
        DO I = 1, NEV
                                              ND = EVND(I,1)

IF (EVND(I,3) .EQ. 0) THEN

N = MTH
                                                              ELSE
                                                               \mathbf{N} = 0
                                    IF (TDFLAG) THEN

IF (EVND(1, 3) .LT. 0) THEN

READ (COLSTR(NNDS), '(F10.0)') EVTB(0,1)

ELSE

ELSE
                                       J = EVND(I,3) + 1
READ (COLSTR(J), '(F10.0)') EVTB(0,I)
ENDIF
                                                                ELSE
                                                          EVTB(0,1) = 0.0
ENDIF
                                                             ENDIF
                                       IF (NDTYP(ND) .EQ. 1) THEN

RES = NDSEQ(ND)

ZVA(2) = INST(RES)

IF (GETZVA(ND, 2, ZVA, 26)) THEN

RTERM = EVTB(N,I) * UC(EVND(I,2)) * ZVA(3)
                   If the available water is less than the calculated evaporation, the evaporation is set to equal to one half of the available water
                                             NV = NINT(RTERM * XF)
                                CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP, LDARC, ND, SKSC, NV, NV, 0, 4)
NDXAR(ND, 2) = NARC
                                                                ELŚE
                            ENDIF
                                                             ENDIF
        ENDDO
99
        RETURN
                   rnof_dat
Read data for surface runoff.
* Name:
  Purpose:
                                            SUBROUTINE RNOF_DAT(NDNAM, LDND, & NRNOF, RNOFND, LDRNOF, RN & FILNAM, NTLS, IN, OU, PN, & CTERM, COLSTR, LDCOL)
                                                        RNOFTB, LDRFTB, A5DR,
      &
      8
        IMPLICIT
                        NONE
        INTEGER
                        LDND
        CHARACTER
                       NDNAM(LDND)*(*)
NRNOF, LDRNOF, RNOFND(LDRNOF), LDRFTB
RNOFTB(LDRNOF, 0:LDRFTB), A5DR(LDRNOF, 5)
        INTEGER
        CHARACTER
                       FILNAM*(*)
NTLS, IN, OU, PN
        INTEGER
        INTEGER
                        LDCOL
        CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                       I, J, K, IU
ERR, CN, FLAG, ENDFIL
SAVOPT
        LOGICAL
        INTEGER
                        /SAVOPT/ SAVOPT
        IF (FILNAM .NE. ' ') THEN
                         FLAG = .TRUE.

IU = 9

CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER RUNOFF DATA FILE: ')
                                                  DO I = 1, NTLS
READ (IU, *, END = 100)
                                                             ENDDO
        ELSE
```

```
FLAG = .FALSE.
IU = IN
                           CALL PNCK(PN, IU, ENDFIL, CTERM, COLSTR, LDCOL)

IF (ENDFIL) GOTO 99

READ (IU, *)! SKIP THE VARIABLE LIST LINE
      ENDIF
 -----Output title
      IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ.
                                              .EQ. 1) THEN WRITE(OU, 800) PN
          FORMAT(//, 'Part', I2, ': Surface-runoff data',
800
                         Initial criterion 5-day rainfall',
       /, T13,
/, T11,'
       /, T13, \ Antecedent
                                                           Wet
                                                                             SCS',
                                           Drv
                       Drainage',
       /, T11,'5-day rainfall condition
                                                     condition
                                                                            curve',
                            area',
       /, 'Name',
                       (inches)
                                     (inches)
                                                      (inches)
                                                                         number',
      ENDIF
  -----Read data
      NRNOF = 0
5
      CONTINUE
      STOP !CALL EXIT
      IF (CN(COLSTR(1), 'FINISH', 1)) GOTO 100 NRNOF = NRNOF + 1 DO J = 1, K
      ENDIF
                     IF (J .EQ. 1) THEN CALL NAMNUM(LDND, NDNAM, COLSTR(1), RNOFND(NRNOF), 0, ERR)
                                                       ELSE
                                                    '(F15.0)') RNOFTB(NRNOF, J-2)
                             READ (COLSTR(J),
      ENDDO
    -----Assign intial 5-day antecedent rainfall (daily).
      DO J = 1, 5
                                A5DR(NRNOF, J) = RNOFTB(NRNOF, 0) / 5.0
      ENDDO
      CONTINUE
100
      IF (FLAG) CLOSE(IU)
   -----Print the data
      IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN DO I=1 , NRNOF
              WRITE(OU, 901) NDNAM(RNOFND(I)), (RNOFTB(I,J), J=0,LDRFTB) FORMAT(A12, 10F12.2)
901
                                                      ENDDO
      ENDIF
99
      RETURN
Name:
                rnof_arc
                Generate surface-runoff arcs.
 Purpose
      SUBROUTINE RNOF_ARC(NDTYP, NDSEQ, LDND,
NARC, II, JJ, LO, HI, COST, ARTYP, LDARC,
INST, LDRES,
                              NDXAR, LDXAR, NRAIN, RAINND, LDRAIN, RAINTY, NRNOF, RNOFND, LDRNOF, RNOFTB, LDRFTB, A5DR, PERD, SKSC, XF, IU, CTERM, COLSTR, LDCOL)
      IMPLICIT
                    NONE
                    NONE
LDND, NDTYP(LDND), NDSEQ(LDND)
NARC, LDARC,
II(LDARC), JJ(LDARC), LO(LDARC), HI(LDARC),
COST(LDARC), ARTYP(LDARC)
LDBFS
      INTEGER
      INTEGER
                    LDREŠ
                    LDRES
INST(LDRES)
LDXAR, NDXAR(LDXAR, 6)
NRAIN, LDRAIN, RAINND(LDRAIN, 3), RAINTY
NRNOF, LDRNOF, RNOFND(LDRNOF), LDRFTB
RNOFTB(LDRNOF, 0:LDRFTB), A5DR(LDRNOF, 5), PERD
      REAL
      INTEGER
      INTEGER
      REAL
                    IU, SKSC
      INTEGER
```

```
INTEGER
                             LDCOL
          CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                             I, NRN, ND, NNDS, RES, NV, RFND ZVA(3), UC(0:2,2), RNOF, RNOF2, RAIN, AREA, SCSCN, MXRET
          INTEGER
          REAL
          LOGICAL
                             GETZVA
          UC(0,1) = 12.0
                                                                     -> INCHES
         UC(1,1) = 12.0

UC(1,1) = 1.0

UC(2,1) = 0.03937

UC(0,2) = 1.0

UC(1,2) = 86400./
                                                       INCHES --> INCHES
                                                      MM --> INCHES
AC-FT/D--> AC-FT/D
                                                                  --> INCHES
                                      /43560.
                                                                   --> AC-FT/D
                                                       CFS
          UC(2,2) = 1.0/43560
                                                   ! CFD
                                                                   --> AC-FT/D
          DO I = 1, NRAIN
                                                                NDXAR(ND, 3) = 0
          ENDDO
         -----Read the rainfall data
          READ (IU, '(A)', END = 999) CTERM CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',') DO NRN = 1, NRAIN
                                                  ND = RAINND(NRN, 1)
IF (RAINND(NRN, 3) .LT. 0) THEN
READ (COLSTR(NNDS), '(F15.0)') RAIN
                                                                          ELSÉ
                                                 READ (COLSTR(NRN+1), '(F15.0)') RAIN ENDIF
                          IF (RAINTY EQ. 1) THEN RAIN = RAIN * UC(RAINND(NRN, 2), 1)
                                                                                                      ! CONVERT TO INCHES
*-----Find the drainge area and SCS curve number
                                   \begin{array}{c} \text{RFND} = 1 \\ \text{AREA} = 0.0 \\ \text{DO WHILE (RFND .LE. NRNOF .AND. RNOFND(RFND) .NE. ND)} \\ \text{RFND} = \text{RFND} + 1 \\ \end{array}
                                                                            ENDDO
                                                           IF (RFND .GT. NRNOF) THEN

AREA = 0.0

SCSCN = 0.0
                                    ELSE

AREA = RNOFTB(RFND, 4)

CALL SCS_CN(SCSCN, RFND, RNOFTB, LDRNOF, LDRFTB, A5DR, RAIN, PERD)
        &
                                                                            ENDIF
    -----Find the reservoir water surface area
                                                  ZVA(3) = 0.0

RNOF2 = 0.0

IF (NDTYP(ND) .EQ. 1) THEN

RES = NDSEQ(ND)

ZVA(2) = INST(RES)

IF (GETZVA(ND, 2, ZVA, 26)) THEN

RNOF2 = RAIN / 12.0 * ZVA(3) * XF

ENDIF
                                                                             ENDIF
*----surface runoff
                                    AREA = AREA - ZVA(3)

RNOF = 0.0

IF (AREA .GT. 0.0000001) THEN

MXRET = 1000.0 / SCSCN - 10.0

IF (RAIN .GT. 0.2 * MXRET) THEN

RNOF = (RAIN - 0.2 * MXRET) * (RAIN - 0.2 * MXRET)

/ (RAIN + 0.8 * MXRET) / 12.0 * AREA * XF

ELSE

RNOF = 0 0
        &
                                                                      RNOF = 0.0
ENDIF
                                                                             ENDIF
    -----Create runoff arc
                                  NV = NINT (RNOF + RNOF2)
ELSE IF (RAINTY .EQ. 2) THEN

RAIN = RAIN * UC(RAINND(NRN, 2), 2) !TO AC-1

NV = NINT(RAIN * PERD * XF)
ENDIF

IF (NV .GT. 0) THEN

CALL ARCVAL(NARC, II, JJ, LO, HI, COST, ARTYP,
LDARC, SKSC, ND, NV, NV, 0, 5)

NDXAR(ND, 3) = NARC
ENDIF
                                                                                                             !TO AC-FT/D
          ENDDO
 999
          RETURN
          END
                                        ------------
* Name:
  Purpose:
                        Calculate the SCS curve number based on antecedent 5-day
                        rainfall conditions.
```

```
SUBROUTINE SCS_CN(CN, RFND, RNOFTB, LDRNOF, LDRFTB, A5DR, RAIN,
                        PERD)
      IMPLICIT
                 NONE
      INTEGER
                 RFND,
                       LDRNOF,
                               LDRFTB
                 CN, RNOFTB(LDRNOF, 0:LDRFTB), A5DR(LDRNOF, 5), RAIN PERD
      REAL
      INTEGER
      REAL
                 A5DR0
      ------Update the 5-day antecedent rainfalls
      IF (INT(PERD) .GT. 4) THEN
                                  DO I = 1, 5
A5DR(RFND, I) = RAIN / PERD
ENDDO
      ELSE
                                DO I = 5, INT(PERD)+1, -1
A5DR(RFND, I) = A5DR(RFND, I-1)
ENDDO
DO I = 1, INT(PERD)
A5DR(RFND, I) = RAIN / PERD
ENDDO
      ENDIF
      A5DR0 = 0.0
DO I = 1, 5
                                A5DR0 = A5DR0 + A5DR(RFND, I)
      RNOFTB(RFND, 0) = A5DR0
      RETURN
Name:
              weirflw
              Calculate flow over a sharp-crested weir.
      SUBROUTINE WEIRFLW(Q, H, HT, B, P, W, HD, WEIRTYP, IFAULT)
      IMPLICIT
                 NONE
                 WEIRTYP, IFAULT
Q, H, HT, B, P, W, HD
      INTEGER
      REAL
      REAL
      -----Determine the coefficients of discharge
      IFAULT = 0
      IF (WEIRTYP .EQ. 1) THEN
                                    CALL CDSCW(CD, H, P)
      ELSE IF (WEIRTYP .EQ. 2) THEN
                                   CALL CDRCW(CD, H, HD)
      ELSE IF (WEIRTYP .EQ. 3) THEN
                                 CALL CDBCW(CD, H, HT, P, W)
      ELSE
                                         IFAULT = 1
      Q = CD * B * SQRT(2.0 * 32.17) * H**1.5
      RETURN
* Name:
              weirhite
* Purpose:
              Determine the weir height for a given flwo
      SUBROUTINE WEIRHITE(Q, H, HT, B, P, W, HD, WEIRTYP, IFAULT)
      IMPLICIT
                 NONE
                 Q, H, HT, B, P, W, HD
WEIRTYP, IFAULT
      INTEGER
                 X1, X2, TOL, QQ
TOL / 0.0001/
      REAL
      DATA
      IFAULT = 0
      IF (WEIRTYP .NE. 1) THEN ! ONLY SHARP-CRESED WEIR IS SUPPORTED.
                                         IFAULT =
                                           RETURN
     Note: h is the water depth approaching the weir, referring to the base of weir, i.e. river bed.
      ----Find the weir height.
     X1 = 0.0

X2 = H

QQ = 0.0
      DO WHILE (ABS (QQ - Q) / Q .GT. TOL)
```

```
P = 0.5 * (X1 + X2)

CALL WEIRFLW(QQ, H-P, HT-P, B, P, W, HD, WEIRTYP, IFAULT)

.GT. Q) THEN

YINCREASE THE HEIGHT OF WEIR TO REDUCE FLOW

X1 = P

ELSE IE (CQ IT Q) THEN INCREASE THE HEIGHT OF WEIR
                       ELSE IF (QQ .LT. Q) THEN
                                                              !DECREASE THE HEIGHT OF WEIR
                                                             X2 = P
                                                            ENDIF
     ENDDO
     RETURN
     END
     Calculation of coefficient of discharge for sharp-crested weir
     SUBROUTINE CDSCW(CD, H, P)
     IMPLICIT
     REAL
                    CD, H, P
-----Discharge coefficient for free outflow
     CD = 1.06*((14.14*P/(8.15*P+H))**10.0+(H/(H+P))**15.0)**(-0.1)
CD = 2.0 / 3.0 * CD
PETULDN
     RETURN
     END
     Calculation of coefficient of discharge for round-crested weir
     SUBROUTINE CDRCW(CD, H, HD)
                     NONE
     IMPLICIT
                     CD, H, HD
                     HHD
     REAL
 -----Discharge coefficient for free outflow
     CD = 0.502
     IF (HD .GT. 0.0001 .AND. H .GT. 0.0001) THEN
                         HHD = H / HD
CD = 0.3849 + 0.3849 * 4.0 * HHD / (9.0 + 5.0 * HHD)
     ENDIF
     RETURN
     END
     Calculation of coefficient of discharge for broad-crested weir
     SUBROUTINE CDBCW(CD, H, HT, P, W)
                     NONE
                     CD, H, HT, P, W
     REAL
                     ISHAPE, IFWTYP
CS, CC, PH, HTH, HW
     INTEGER
    -----Coefficient of discharge for free outflow
     IF (W .GT. 0.00001) THEN
                 ELSE
                                                       PH = P/H
ISHAPE = 0
                                ISHAPE = U

.EQ. 0) THEN
! VERTICAL FACE WITH ROUNDED ENTRANCE.
IF (PH .LE. 3) THEN

CD = 0.36 + 0.01 * (3.0 - PH) / (1.2 + 1.5 * PH)

ELSE

CD = 0.36 + 0.01 * (3.0 - PH) / (1.2 + 1.5 * PH)
                IF (ISHAPE .EQ. 0) THEN
                                                             CD =
                                                                    0.36
                                                              ENDIF
                              ELSE IF (ISHAPE .EQ. 1) THEN ! VERTICAL FACE.

IF (PH .LE. 3) THEN

CD = 0.32 + 0.01 * (3.0 - PH) / (0.46 + 0.75 * PH)
                                                             ELSE
CD = 0.32
                                                              ENDIF
                                                            ENDIF
     ENDIF
             -Estimate the submerged coefficient
The equation is the regressed equation obtained out of
data from Chengdu, 1977.
     \begin{array}{ll} \text{HTH} &=& \text{HT} \ / \ \text{H} \\ \text{CS} &=& 1.0 \\ \text{IF} \ (\text{HTH} \ .\text{GE.} \ 0.8) \ \text{THEN} \end{array}
                            IFWTYP = 2

IF (HTH .LT. 0.86) THEN

CS = 1.6892 - 0.8571 * HTH

ELSE

CS = 1.2504 - 0.06897 * HTH / (1.0 - 0.9388 * HTH)
                                                           ENDIF
                                                IF (CS .GT. 1.0) THEN
CS = 1.0
ENDIF
     ENDIF
```

```
CC = 1.0
CD = CD * CS * CC
       RETURN
                 gateflw
Calculate dicharge under gates.
  Name:
* Purpose:
                 Xiaodong Jian
12/10/96
* Author:
* Date:
       SUBROUTINE GATEFLW(Q, H, HT, B, E, HD, GATETY, IFAULT)
                    NONE
Q, H, HT, B, E, HD
GATETY, IFAULT
       IMPLICIT
       INTEGER
                     CD, EH, EPS
       REAL.
       INTEGER
                    IFWTYP
EPS /1.0E-10/
          -----If e = 0, find the maximum flow under gate
      !SPILLWAY
                                                                      !BROAD WERI
                                                     ENDIF
       ENDIF
     -----Check gate opeing height.
       EH = E / H
IF (GATETY .EQ. 2 .AND. EH .GT. 0.75+EPS) THEN
IFAULT = 1
       ELSE IF (GATETY .EQ. 3 .AND. EH .GT. 0.65+EPS) THEN
                                                  IFAULT = 1
       ENDIF
     -----Calculate the discharge coefficient.
       IF (GATETY .EQ. 2) THEN ! VERTICAL FLAT GATE ON SPILLWAY.

CALL CDGTSP(CD, H, E, HD)

ELSE IF (GATETY .EQ. 3) THEN ! VERTICAL FLAT GATE ON BROAD-CRESTED WEIR.

CALL CDGTBW(CD, H, HT, E, IFWTYP)
       ELSE
                                                  IFAULT = 2
                                                     RETURN
       ENDIF
   -----Calculate the discharge under gate
       Q = CD * B * E * SQRT(2.0 * 32.17 * H)
       RETURN
       END
                  Name:
                 gatehite
  Purpose:
                 Calculate the gate opening height for a given dicharge
                under gates.
Xiaodong Jian
01/24/97
  Author:
       SUBROUTINE GATEHITE(Q, H, HT, B, E, HD, GATETY, IFAULT)
                    NONE
Q, H, HT, B, E
GATETY, IFAULT
       IMPLICIT
                                B, E, HD
       REAL
       INTEGER
                    X1, X2, TOL, QQ
TOL / 0.0001/
       DATA
      -----maximum flow under gate.
       E = 0.0
       CALL GATEFLW(QQ, H, HT, B, E, HD, GATETY, IFAULT)
IF (QQ .LT. Q) THEN
                                                 E = -999.99
                                                  IFAULT = 1
                                                     RETURN
       ENDIF
      -----Find the gate opening height.
      X1 = 0

X2 = H

DO WHILE(ABS(QQ - Q) / Q .GT. TOL)

E = 0.5 * (X1 + X2)

CALL GATEFLW(QQ, H, HT, B, E, HD, GATETY, IFAULT)

IF (QQ .GT. Q) THEN

X2 = E

ELSE IF(QQ .LT. Q) THEN

X1 = E

PNDIF
```

```
ENDDO
       RETURN
                cdat bw
  Name:
                Compute the discharge coefficien for flow under sluice-
gate on the broad weir.
  Purpose:
                Xiaodong Jian
12/17/96
 Author:
 Date:
       SUBROUTINE CDGTBW(CD, H, HT, E, IFWTYP)
                   NONE
CD, H, HT, E
IFWTYP
       IMPLICIT
       REAL
       INTEGER
       REAL
                    HMAX
       IFWTYP = 1
       CD = 0.611 * ((H - E) / (H + 15.0*E))**0.072
    -----Check flow type
       IF (E .NE. 0) THEN
                    HMAX = 0.81 * HT * (HT / E)**0.72

IF (H .GT. HT .AND. H .LT. HMAX) THEN ! SUBMERGED FLOW

IFWTYP = 2

CD = CD * (H - HT)**0.7 / (0.32 * (0.81 * HT * (HT/E)**0.72 - H)**0.7 + (H - HT)**0.7)
                                                   ENDIF
       ELSE
                                                IFWTYP = 0
       ENDIF
       RETURN
 cdgtsp -- Calculate the discharge coefficient for plane gate on
             spillway
*=
       SUBROUTINE CDGTSP(CD, H, E, HD)
                    NONE
       IMPLICIT
                    CD, H, E, HD
      REAL
       REAL
                    EH, EHD, EPS
EPS /0.0001/
      DATA
       EH = E / H
       IF (HD .GT. EPS) THEN
                  EHD = E / HD
CD = 0.495 / EH * (1.0-(1.0-EH)**1.5) * (0.1667+EHD)**0.1111
       ELSE
                                         CD = 0.65 - 0.186 * EH
       ENDIF
       RETURN
       END
*======
             ______
                pipe_flw
Calculate flows through a pipe.
 Name:
  Purpose:
                                                    ______
       SUBROUTINE PIPE_FLW(PIPTYP, FLW, H, DIAM, LENG, FRIC, ENLOS,
                               ROUGH)
       IMPLICIT
                    NONE
                    PIPTYP
FLW, H, DIAM, LENG, FRIC, ENLOS, ROUGH
       INTEGER
       REAL
      REAL
                   DISCH, R, J, A
       !LONG PIPE
      ELSE
  Long pipe: Q = K J**0.5, where K = A C R**0.5, A -- area C -- Chezy coefficient (or manning coefficient) J -- Hydraulic slope. then Q = 1.486 * A / rough * R**(2/3) * J**0.5
                           ENDIF
      RETURN
       END
 Name:
                fb_dat
                Open a seasonal flow bound data file for selected arcs.
  Purpose:
      SUBROUTINE FB_DAT(II, JJ, ARTYP, LDARC, NDNAM, LDND,
NFBAR, FBAR, LDFBAR, FBTB, LDFBTB,
FBUNIT, FBFLAG, FILNAM, NTLS, IN, PN, OU,
PTDWAR, LDPTDW, NDDWAR, LDDWAR,
     &
&
```

```
UNITHM, LDUNIT, CTERM, COLSTR, LDCOL)
        IMPLICIT
                          NONE
                          NONE
LDARC, II(LDARC), JJ(LDARC), ARTYP(LDARC), LDND
NDNAM(LDND)*(*), FILNAM*(*)
NFBAR, LDFBAR, FBAR(0:7, LDFBAR), FBUNIT
LDFBTB, LDPTDW, LDDWAR
FBTB(0:LDFBTB, LDFBAR)
        INTEGER
        CHARACTER
        INTEGER
        INTEGER
        REAL
        LOGICAL
                          FBFLAG
        INTEGER PTDWAR(LDPTDW, 2), NDDWAR(LDDWAR)
INTEGER NTLS, IN, PN, OU, LDUNIT, LDCOL
CHARACTER*(*) UNITNM(0:LDUNIT), CTERM, COLSTR(LDCOL)
        INTEGER
                          NREC, SL
I, J, K, L, M, N
ERR, FLAG, ENDFIL
        INTEGER
        INTEGER
        LOGICAL
        LOGICAL
                          CN
SAVOPT
        INTEGER
                          /SAVOPT/ SAVOPT
        COMMON
        _ DE LAG = .FALSE.
NFBAR = 0
        -----Open data file and skip title lines
        IF (FILNAM .NE. ' ') THEN
                     FLAG = .TRUE.

IU = 9

CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER SEASONAL FLOW BOUND FILE: ')

DO I = 1, NTLS

READ (IU, *, END = 99)
                                                                     ENDDO
        ELSE
                                  FLAG = .FALSE.

IU = IN

CALL PNCK(PN, IU, ENDFIL, CTERM, COLSTR, LDCOL)

IF (ENDFIL) GOTO 99
        CALL FB_HED(NDNAM, LDND, II, JJ, ARTYP, LDARC,
NFBAR, FBAR, LDFBAR, FBUNIT,
ENDFIL,
       ENDFIL,

PTDWAR, LDPTDW, NDDWAR, LDDWAR, FILNAM, IU,

CTERM, COLSTR, LDCOL, ERR)

IF (ERR) STOP !CALL EXIT

IF (ENDFIL) GOTO 99

FBFLAG = .TRUE.
           -----Read data
        NREC = 0
       NREC = U
CONTINUE
READ (IU, '(A)', END = 99) CTERM
IF (CN(CTERM, 'FINISH', 1)) GOTO 99
CALL STR_DIVD(CTERM, J, COLSTR, LDCOL, 0, ',')
IF (J .NE. (NFBAR + 1)) THEN
PRINT *, '***ERROR*** FILE = ', FILNAM
PRINT *, ' FOR TIME = ', COLSTR(1)
30
        ENDIF
        NREC = NREC + 1
        DO J = 1, NFBAR
                                      READ (COLSTR(J+1), '(F10.0)') FBTB(NREC, J)
        ENDDO
99
        CONTINUE
        IF (FLAG) CLOSE(IU)
       -----Print FB information into the general output file
        IF (NREC .GT. 0) THEN
                                      ENDFIL = .FALSE.

FBFLAG = .TRUE.

IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN

CALL STR_LEN(UNITNM(FBUNIT), K)

WRITE(OU, 801) PN, UNITNM(FBUNIT)(1:K),
                                    ('=', I = 1, K)
'Part', I2, ': Seasonal flow bounds, in ', A,
                  FORMAT (//,
801
                                                         DO K = 1, NFBAR, 8

IF ((K+7) .GT. NFBAR) THEN

L = NFBAR
                                                                          ELSE
                                                                   \Gamma = K +
        -----1. Upstream and downstream nodal names
                               &
                       (NDNAM(FBAR(2,J))(1:SL(NDNAM(FBAR(2,J)))), J = K, L)
FORMAT(A, T20, 10A12)
805
```

```
*----2. Flow bounds index
                                                  WRITE (OU, 806) (FBAR(3, J), J = K, L) FORMAT(' Flow zone index:', T20, 10112)
  806
                    -----3. Arc number
                                                                                                   WRITE (OU, 807) (FBAR(0, J), J = K, L) Arcs:', T20, 10112)
  807
                                                  FORMAT( \
                                                                                                                                                  DO N = 4, 5
                                                                                                                                         M = 1

CTERM = '
                                                                                                                    DO J = K, L

IF (FBAR(N,J) .NE. 0) THEN

ERM(M:M+11), '(112)') FBAR(N,J)
                                                                                      WRITE(CTERM(M:M+11), (I1
ENDIF
                                                                                                                  ENDIF

M = M + 12

ENDDO

IF (CTERM .NE. ' ') THEN

WRITE (OU, 809) CTERM(1:50)

EXTENDED ARC:', T20, A)

ENDIF

ENDIF
  809
                                                                       FORMAT ('
                                                                                                                                                            ENDDO
*-----4. Data matrix
                                                                                                                                            DO I = 1,
                                                                                                                                                                            NREC
                                                            WRITE (OU, 810) I, (FBTB(I, J), J = K, L)
FORMAT (5X, I5, T20, 10F12.2)
ENDDO
  810
                                                                                                                                                       ENDDO
                                                                                                                                                  ENDIF
                   ENDIF
                    RETURN
                    END
* Name:
                                              fb_fil
   Purpose:
    Purpose: Open a time series file header.
                   SUBROUTINE FB_FIL(NDNAM, LDND, II, JJ, ARTYP, LDARC,
PTDWAR, LDPTDW, NDDWAR, LDDWAR,
NFBAR, FBAR, LDFBAR, FBUNIT,
UNITNM, LDUNIT, FBFLAG, FBFIL, FILNAM,
NTLS, IU, OU, CTERM, COLSTR, LDCOL)
                æ
                   INTEGER LDND, LDARC, II(LDARC), JJ(LDARC), ARTYP(LDARC)
INTEGER LDPTDW, LDDWAR, PTDWAR(LDPTDW, 2), NDDWAR(LDDWAR)
INTEGER NFBAR, LDFBAR, FBAR(0:7, LDFBAR), FBUNIT, LDUNIT
CHARACTER*(*) NDNAM(LDND), UNITNM(0:LDUNIT), FILNAM
INTEGER NTLS, IU, OU
LOGICAL FBFLAG, FBFIL
INTEGER LDCOL
                    INTEGER
                                                          LDCOL
                    CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                                                         I, J, K, L, M, NREC, SL, N, FBIDX(100) ERR, ENDFIL
                    INTEGER
                    LOGICAL
                    INTEGER
                                                          SAVOPT
                                                         /SAVOPT/ SAVOPT
                    COMMON
                                                 .FALSE.
                    IF (FILNAM .EQ. ' ') THEN
                                                                                                                                              GOTO 99
                    CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER FB DATA FILE: ')
                   Read title lines, flow unit, upstream and downstream nodal names, and flow zone index. And find the corresponding arc and nodal
                    numbers.
                    DO I = 1, NTLS
                                                                                                                                      READ (IU, *)
                  ENDDO
CALL FB_HED(NDNAM, LDND, II, JJ, ARTYP, LDARC,
SEMDFIL,
SEMD
                    ENDDO
                    IF (FBFIL) THEN
       -----No. of time-dependent arcs
                                                                                                                                           FBIDX(I) = 0
                                                                                                                                                  ENDDO
                                                                                                                                                   N = 0
                                                                                                                                 DO I = 1, NFBAR
```

```
J = FBAR(7, I)
IF (J .NE. 0) THEN
N = N + 1
                                                                           FBIDX(J) = I
                                                                              ENDIF
                                                                           ENDDO
    -----Save file information
                                         IF (SAVOPT .EQ. 0 .OR. SAVOPT .EQ. 1) THEN CALL NORECS(IU, NREC)
WRITE (OU, 800) FILNAM, UNITNM(FBUNIT), N, NREC
                    FORMAT (
//, 'Summary for flow-bound data file: ',
/, 12X, ' File name: ', A
/, 12X, ' Data unit: ', A
/, 12X, ' Number of arcs: ', I4,
/, 12Y, ' Number of records: ', I4,
 800
         &
                                      ' File name: ', A
' Data unit: ', A
' Number of arcs: ', I4,
' Number of records: ', I4)
                                                                  DO J = 1, N, 5

K = J + 4

IF ((J+4) \cdot GT \cdot N) THEN

K = N

ELSE
                         &
 805
 806
 807
 808
                                                          DO L = 4, 5

M = 1

CTERM = ' '

DO I = J, K

(FBAR(L,FBIDX(I)) .NE. 0) THEN

4(M:M+9), '(I10)') FBAR(L,FBIDX(I))

ENDIF

M = M + 10
                                       WRITE(CTERM(M:M+9),
                                                                          M = M + 10
                                                           M - M + 10
ENDDO

IF (CTERM .NE. ' ') THEN
WRITE (OU, 811) CTERM(1:50)
EXTENDED ARC NUMBERS: ', A)
ENDLP
                                    FORMAT ('
 811
                                                                                ENDDO
                                                                              ENDDO
                                                                           ENDIF
          ENDIF
 99
          RETURN
* Name:
                        fb_arc
                        Read current flow bounds and modify the flow bounds in the
                        arcs.
         SUBROUTINE FB_ARC(LO, HI, ARTYP, LDARC,
NFBAR, FBAR, LDFBAR, FBTB, LDFBTB, FBFIL,
MTH, PERD, XF, IU,
CTERM, COLSTR, LDCOL)
         IMPLICIT
                             NONE
                             NONE
LDARC, LO(LDARC), HI(LDARC), ARTYP(LDARC)
NFBAR, LDFBAR, FBAR(0:7,LDFBAR), LDFBTB
FBTB(0:LDFBTB, LDFBAR)
          INTEGER
         LOGICAL
                             FBFIL
          INTEGER
                            IU, MTH
PERD, XF
         REAL
          INTEGER
         CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                             I, J, N, ARC, ARC2, NV, ZNIDX UC(0:2)
          INTEGER
                            STRM, TDFLAG
         LOGICAL
        ------Unit conversion factor: 0 -- ac-ft --> ac-ft 1 -- cfs --> ac-ft
                                                                  2 -- cfd
         UC(0) = 1.0

UC(1) = PERD * 86400.0 / 43560.0

UC(2) = PERD / 43560.0
```

-----Read current flow bounds

```
TDFLAG = .FALSE
          IF (FBFIL) THEN
                                      READ (IU, '(A)', END = 50) CTERM
CALL STR_DIVD(CTERM, I, COLSTR, LDCOL, 0, ',')
TDFLAG = .TRUE.
          ENDIF
 50
          CONTINUE
   -----Change flow bounds for arcs
          DO 100 J = 1, NFBAR
   -----Get a flow bound
                                                         IF (FBAR(7, J) .EQ. 0) THEN
N = MTH
                                                                               ELSE
                                                                                N = 0
                                                     IF (TDFLAG) THEN

I = FBAR(7, J) + 1

READ (COLSTR(I), '(F10.0)') FBTB(0,J)

ELSE
                                                                          FBTB(0,J) = 0.0
GOTO 100
ENDIF
                                                                              ENDIF
                                                ARC = FBAR(0, J)
ZNIDX = FBAR(3, J)
WRITE (CTERM, '(14)') ARTYP(ABS(ARC))
IF (CTERM(3:3) . EQ. '1') THEN
STRM = .TRUE.
ARC2 = IABS(ARC) + 1
ELSE
                                           ARC2 = 0
ENDIF

NV = NINT(FBTB(N,J) * UC(FBAR(6,J)) * XF)

IF (ARC .GT. 0 .AND. ZNIDX .EQ. -1) THEN

LO(ARC) = NV

IF (ARC2 .GT. 0) LO(ARC2) = NV

ELSE

HI(ABS(APC))
                                                     HI(ABS(ARC)) = NV
IF (ARC2 .GT. 0) HI(ABS(ARC2)) = NV
ENDIF
 100 CONTINUE
 99
          RETURN
          END
                                            * Name:
 Purpose: Read header of the flow bound file.

SUBROUTINE FB_HED(NDNAM, LDND, II, JJ, ARTYP, LDARC,

NFBAR, FBAR, LDFBAR, FBUNIT,
* Purpose:
                                           ENDFIL,
PTDWAR, LDPTDW, NDDWAR, LDDWAR, FILNAM, IU,
CTERM, COLSTR, LDCOL, ERR)
        æ
          IMPLICIT
                              NONE
                              NONE
LDND, LDARC, II(LDARC), JJ(LDARC), ARTYP(LDARC)
NFBAR, LDFBAR, FBAR(0:7, LDFBAR), FBUNIT, IU
LDPTDW, PTDWAR(LDPTDW, 2), LDDWAR, NDDWAR(LDDWAR)
NDNAM(LDND)*(*), FILNAM*(*)
          INTEGER
          INTEGER
          INTEGER
          CHARACTER
                              ENDFIL
          INTEGER
                              LDCOL
          CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                              ND1, ND2, ND, FBIDX, TYP, ZONE, ARC, ARC1, ISGN I, J, K, L, N, I1, I2 ERR, STRM, ARFIND LDFB
          INTEGER
          INTEGER
          LOGICAL
          INTEGER
                              (LDFB = 100)
NFB, FBDAT(3, LDFB)
          PARAMETER
          INTEGER
          ENDFIL = .TRUE.
   -----Flow units
          READ (IU, \star, END = 99) FBUNIT
         -----Read upstream and downstream nodal names and zone index.
                                      READ (IU, '(A)', END = 99) CTERM

CALL STR_DIVD(CTERM, L, COLSTR, LDCOL, 0, ',')

IF (L .GT. LDFB) THEN

PRINT *, '***ERROR*** ARRAY SIZE IS NOT BIG ENOUGH.'

PRINT *, 'CHANGE LDFB IN FB_HED AT LEAST ', L

STOP !CALL EXIT

ENDIF

IF (I .EQ. 3) THEN

DO J = 2, L

READ (COLSTR(J), '(I2)') FBDAT(I, J-1)

ENDDO

ENDDO

ELSE
          DO T = 1.3
```

```
NFB = L
DO J = 1, L
CALL NAMNUM(LDND, NDNAM, COLSTR(J), ND, 0, ERR)
IF (ERR) THEN
WRITE(*, 901) COLSTR(J), FILNAM
FORMAT( '***ERROR***NODAL NAME: ', A12,
' IN THE FILE: ', A)
PRINT *, ' NOT FOUND IN THE NETWORK CONFIGURATION.'
STOP !CALL EXIT
ELSE
901
                                                                                          ELSE
FBDAT(I, J) = ND
ENDIF
                                                                                                         ENDDO
                                                                                                      ENDIF
            ENDDO
            IF (NFBAR .EQ. 0) THEN
        ----seasonal data
                                                                                       NFBAR = NFB
DO J = 1, NFB
DO I = 1, 3
FBAR(I, J) = FBDAT(I,J)
ENDDO
FBAR(6, J) = FBUNIT
FBAR(7, J) = 0
FNDDO
                                                                                                     ENDDO
            ELSE
     -----Time-dependent data
                                           \begin{array}{c} N=0\\ DO\ 10\ K=1,\ NFB\\ DO\ J=1,\ NFBAR\\ IF\ (FBAR(1,J)\ .EQ.\ FBDAT(1,\ K)\ .AND.\\ FBAR(2,J)\ .EQ.\ FBDAT(2,\ K)\ .AND.\\ FBAR(3,J)\ .EQ.\ FBDAT(3,\ K)\ THEN\\ FBAR(6,\ J)=FBUNIT\\ FBAR(7,\ J)=K\\ GOTO\ 10\\ ENDIF\\ \end{array}
                                                                                                            ENDIF
                                                                                                   \begin{array}{c} ENDIF \\ ENDDO \\ N = N + 1 \end{array}
                                                                                               J = NFBAR + N
DO I = 1, 3
                                                                                       DO I = 1, 3

FBAR(I,J) = FBDAT(I, K)
                                                                                        ENDDO
FBAR(6, J) = FBUNIT
FBAR(7, J) = K
10
                   CONTINUE
               ----total number of seasonal & time-dependent flow bound arcs
                                                                                       NFBAR = NFBAR + N
            ENDIF
     -----Find corresponding arc number.
            DO 50 J = 1, NFBAR
                                                                                    ND1 = FBAR(1, J)

ND2 = FBAR(2, J)

FBIDX = FBAR(3, J)

I1 = PTDWAR(ND1, 1)

I2 = PTDWAR(ND1, 2)

ARFIND = .FALSE.

K = 3

DO 20 I = I1, I2

ARC = NDDWAR(I)
     -----Arc type
                                                                   TYP = ARTYP(ABS(ARC))

WRITE(CTERM, '(14)') ARTYP(ABS(ARC))

IF (CTERM(2:2) .NE. '1') THEN

PRINT *, '** ERROR ** INVALID ARC TYPE'

GOTO 99

ENDIF

LE (CTERM(2:3) FO 11') THEN
                                                                            IF (CTERM(3:3) .EQ. '1') THEN
STRM = .TRUE.
ELSE
                                                                           STRM = .FALSE.
ENDIF
READ (CTERM(4:4), '(11)') ZONE
ZONE = ISGN(TYP) * ZONE
          -----Downstream node
                                                                                                  ARC1 = ARC
                                                                                       ARCI - ARC

IF (STRM) THEN

ARC = ARC + ISGN(ARC)

ENDIF

IF (ARC .GT. 0) THEN

ND = JJ(ARC)

ELSE
```

```
ND = II(-ARC)
                                                                                 ENDIF
           -----check the current downstream node
                                   FBAR(0, J) = ARC1
ELSE
FBAR(0, J) = ARC1
ARFIND = .TRUE.
ENDIF
IF (FBIDX .LT. 0) THEN
FBIDX = FBIDX - 1
                                                                                ELSE
                                                                        FBIDX = FBIDX + 1
                                                                                ENDIF
                                                                                    ENDIF
                                                                                  ENDIF
20
              CONTINUE
                    IF (.NOT. ARFIND) THEN
PRINT *, CHAR(7)
WRITE (*, 810) FILNAM
FORMAT('***ERROR*** THE FILE NAME IS ', A)
WRITE (*, 811) NDNAM(ND1), NDNAM(ND2), FBIDX
FORMAT(' THERE DOES NOT AN ARC FROM ', A,
'TO ', A, 'WITH ZONE INDEX = ', I3)
ERR = .TRUE.
ERRORE
810
50
         CONTINUE
         ENDFIL = .FALSE.
RETURN
                        rc_dat
Get seasonal rule curve.
 Name:
         SUBROUTINE RC_DAT(NNODS, NDNAM, LDND,
NRCND, RCND, LDRC, NPER, RCTB, LDRCTB, RCUNIT,
RCFLAG, FILNAM, NTLS, IN, OU, PN,
UNITNM, LDUNIT, CTERM, COLSTR, LDCOL)
         LNTEGER NNODS, LDND, LDUNIT
CHARACTER*(*) NDNAM(LDND), FILNAM, UNITNM(0:LDUNIT)*(*)
INTEGER NRCND, LDRC, RCND(LDRC, 3), NPER, LDRCTB, RCUNIT
REAL RCTB(0:LDRCTB, LDRC)
INTEGER NTLS, IN, OU, PN
LOGICAL RCFLAG
INTEGER LDCOT
         CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
         INTEGER
                             I, NREC, IU
FLAG, ENDFIL
         LOGICAL
          -----Open data file and skip title lines
         IF (FILNAM .NE. ' ') THEN
                                       ' ') THEN

FLAG = .TRUE.

IU = 9

CALL IO_OPFIL(IU, 1, FILNAM, 'ENTER RC FILE: ')

DO I = 1, NTLS !SKIP NTLS TITLE LINES

READ (IU, *, END = 99)

ENDDO
         ELSE
                                       FLAG = .FALSE.

IU = IN

CALL PNCK(PN, IU, ENDFIL, CTERM, COLSTR, LDCOL)

IF (ENDFIL) GOTO 99
         ENDIF
           ------Read units, nonal names, and data from a file and print these information into general output file.
        CALL DATTB(NNODS, NDNAM, LDND, NRCND, RCND, LDRC, RCUNIT, NREC, RCTB, LDRCTB, RCFLAG, UNITHM, LDUNIT, FILNAM, IU, OU, PN, ENDFIL, 'rule-curve elevations', CTERM, COLSTR, LDCOL'

IF (NREC .LT. NPER) THEN
              805
         ENDIF
         CONTINUE
             (FLAG) CLOSE(IU)
         RETÙRN
         END
```

```
* Purpose:
                           Read current target water demand and create
                            corresponding TWS arcs.
           SUBROUTINE RC_ARC(NDNAM, NDSEQ, LDND, HI, LDARC,
PTRE, RC, LDRES, REAR, REZN, LDREAR,
NRCND, RCND, LDRC, RCTB, LDRCTB, RCFIL,
MTH, XF, IU, CTERM, COLSTR, LDCOL)
           IMPLICIT
                                 NONE
                                 LDND, NDSEQ(LDND), LDARC, HI(LDARC)
NDNAM(LDND)*(*)
LDRES, PTRE(LDRES), LDREAR, REAR(LDREAR)
RC(LDRES), REZN(LDREAR)
NRCND, LDRC, RCND(LDRC, 3), LDRCTB
RCTB(0:LDRCTB, LDRC)
RCFIL
                                  LDND, NDSEQ(LDND), LDARC, HI(LDARC)
           CHARACTER
           INTEGER
            INTEGER
           REAL
           LOGICAL
           INTEGER
                                 IU, MTH
           REAL
                                  LDCOL
           INTEGER
           CHARACTER CTERM*(*), COLSTR(LDCOL)*(*)
                                 I, J, J1, J2, N, ND, NNDS, RES, ARC ZVA(3), UC(0:2), UPZN, LOZN, ZN GETZVA, FIRSTL, FIRSTU, TDFLAG
           INTEGER
           REAL
LOGICAL
           UC(0) = 1.0

UC(1) = 1.0 / 12.0

UC(2) = 1.0 / 304.8
              -----Read current rule curve elevation for selected reservoirs
           TDFLAG = .FALSE.
IF (RCFIL) THEN
    READ (IU, '(A)', END = 50) CTERM
    CALL STR_DIVD(CTERM, NNDS, COLSTR, LDCOL, 0, ',')
                  TDFLAG =
                                    .TRUE
           ENDIF
 50
              -----Change the rule curve elevation.
           DO I = 1, NRCND

ND = RCND(I, 1)

IF (RCND(I, 3) .EQ. 0) THEN

N = MTH

ELSE
                       \bar{N} = 0
                       IF (TDFLAG) THEN
IF (RCND(I, 3) .LT. 0) THEN
READ(COLSTR(NNDS), '(F15.0)') RCTB(0, I)
                                   J = RCND(I, 3) + 1
READ (COLSTR(J), '(F15.0)') RCTB(0, I)
                             ENDIF
                        ELSE
                             RCTB(0, I) = 0.0
                       ENDIF
                 ENDIF
                 ENDIF

ZVA(1) = RCTB(N, I) * UC(RCND(I, 2))

RES = NDSEQ(ND)

IF (.NOT. GETZVA(ND, 1, ZVA, 26)) THEN

PRINT *, CHAR(7)

PRINT *, '***ERROR*** TRANSFORM Z-V-A:'

PRINT *, '

POND = ', NDNAM(ND)

PRINT *, '

RC = ', ZVA(1)
                 ENDIF
                 ENDIF

J1 = PTRE(RES)

J2 = PTRE(RES+1) - 1

FIRSTL = .TRUE.

FIRSTU = .TRUE.
                 UPZN = ZVA(2)

LOZN = ZVA(2)

DO J = J1, J2

ARC = REAR(J)
                       ZN = REZN(J)
IF (ARC .LT. 0) THEN
HI(-ARC) = NINT((LOZN - ZN)*XF)
IF (HI(-ARC) .LT. 0) THEN
HI(-ARC) = 0
                             ELSE
                                   LOZN = ZN
                             ENDIF
                       ELNEIF (ARC .GT. 0) THEN
HI(ARC) = NINT((ZN - UPZN)*XF)
IF (HI(ARC) .LT. 0) THEN
HI(ARC) = 0
                                   \overline{U}PZN = ZN
                             ENDIF
                       ENDIF
```

```
ENDDO
                RC(RES) = ZVA(2)
           ENDDO
           RETURN
           END
* Name:
                          savbud
                         Save system water budget into file.
Xiaodong Jian
04/02/97
* Purpose:
* Author:
* Date:
          SUBROUTINE SAVBUD(NNDS, NDNAM, NDTYP, NODBUD, PTDWAR, LDND,
II, JJ, ARCBUD, NDDWAR, LDARC,
NOP, NSPS, XF, XP, OU,
CNDBT, CARBT, CSNDBT, LDSND, CSARBT, LDSAR)
           IMPLICIT
                               NONE
                               LDND, LDARC, NNDS
NDTYP(LDND), NODBUD(LDND, 0:10), PTDWAR(LDND, 2)
NDNAM(LDND)*(*)
II(LDARC), JJ(LDARC), NDDWAR(LDARC), ARCBUD(LDARC, 0:6)
NOP, NSPS, XP, OU
           INTEGER
           INTEGER
           INTEGER
           INTEGER
                               LDSND, LDSAR
CNDBT(0:10), CARBT(6)
CSNDBT(LDSND, 0:10), CSARBT(LDSAR, 0:6)
           INTEGER
           REAL
           REAL
           REAL NDBT(0:10), ARBT(0:6), ALLBUD(8), ERRBD, BUD(6)
INTEGER I, J, K, L, N, LIM1, LIM2, ARC, NARC, OJ
CHARACTER FMT*60, FMT1*60, FMT2*50

FMT*60, FMT1*60, FMT2*50
           LOGICAL
                               SWBFLG
          SWBFLG = .FALSE.

FMT1 = '(10x, a, t35, 3f15.0)'

FMT2 = '(10x, 69(''-''), /, t35, a30, f15.0)'

IF (XP.GT. 0) THEN

WRITE (FMT1(20:20), '(i1)') XP - 1

WRITE (FMT2(33:33), '(i1)') XP - 1
                         Initialize arrays for output budget
          DO I = 0, 10

NDBT(I) = 0.0

IF (NOP .EQ. 1) THEN

CNDBT(I) = 0.0
         ENDIDO
DO I = 1, 6
ARBT(I) = 0.0
IF (NOP .EQ. 1) THEN
CARBT(I) = 0.0
                ENDIF
          IF (NOP .EQ. 1) THEN
DO N = 1, LDSND
DO J = 0, 10
CSNDBT(N, J) = 0.0
                      ENDDO
                ENDDO
                ENDDO
           ENDIF
*-----Water budget of current time step
*-----Calculate the system water budget for current time step
                        1. Nodal budget for current time step
          DO N = 1, NNDS
DO I = 0, 8
NDBT(I) = NDBT(I) + NODBUD(N,I)/XF
                      IF (NOP .EQ. 1 .AND. I .EQ. 0) THEN

CSNDBT(N, I) = NODBUD(N,I)/XF

ELSE IF (I .GE. 1 .AND. I .LE. 7) THEN

CSNDBT(N, I) = CSNDBT(N,I) + NODBUD(N,I)/XF

ELSE IF (I .EQ. 8 .AND. NOP .EQ. NSPS) THEN

CSNDBT(N, I) = NODBUD(N,I)/XF
                      ENDIF
                ENDDO
           ENDDO
                        2. Arc budget
           DO 100 N = 1, NNDS
```

```
LIM1 = PTDWAR(N, 1)

LIM2 = PTDWAR(N, 2)

DO 50 K = LIM1, LIM2

ARC = NDDWAR(K)

I = IABS(ARC)
                      I = IABS(IABC,
DO L = 1, 6

IF (L .GE. 1 .AND. L .LE. 5) THEN

ARBT(L) = ARBT(L) + ARCBUD(IABS(ARC), L)/ XF
                           IF (NOP .EQ. 1 .AND. L .EQ. 2 ) THEN !INITIAL STORAGE
    CSARBT(I, L) = ARCBUD(I, L) / XF
ELSE IF (NOP .EQ. NSPS .AND. L .EQ. 5) THEN !FINAL STORAGE
    CSARBT(I, L) = ARCBUD(I, L)/XF
FILSE
                                 CSARBT(I, L) = CSARBT(I, L) + ARCBUD(I, L)/XF
                           ENDIF
                      ENDDO
      -----Outflow from the system
  9
                      IF (ARC .GT. 0) THEN
                              = JJ(ARC)
                      ELSE
                             = II(-ARC)
                      ENDIF
                      IF (NDNAM(J) .EQ. 'SKSC') THEN
ARBT(6) = ARBT(6) + ARCBUD(IABS(ARC), 6)/ XF
                      ENDIF
                CONTINUE
 100
          CONTINUE
                       Save system water budgets of current time step into the file
           IF (SWBFLG) THEN
                                             !SWBFLG -- SYSTEM WATER BUDEGT FLAG.
                WRITE(OU, 980) NOP
FORMAT (//'System water budgets for time step:', I3,
//'=========')
 980
         &
                WRITE (OU, 955) 'Budget', 'Pond', 'Canal', 'Total'
WRITE (OU, 955) '----', '----', '----',
ALLBUD(1) = NDBT(0)+ARBT(2)
ALLBUD(2) = NDBT(2)
ALLBUD(3) = NDBT(4)
ALLBUD(4) = NDBT(3)+ARBT(4)
ALLBUD(5) = NDBT(5)+ARBT(3)
ALLBUD(6) = NDBT(5)
               &
                                            NDBT(2), 0.0,
'Runoff:',
NDBT(4), 0.0,
'Evaporation:'
                                                                             ALLBUD(2)
         &
                WRITE(OU, FMT1)
         &
                                                                             ALLBUD(3)
                WRITE(OU, FMT1)
                    ITE(OU, FMT1) 'Evaporation:',
MDBT(3), ARBT(4), ALLBUD(4)
ITE(OU, FMT1) 'Groundwater:',
NDBT(5), ARBT(3), ALLBUD(5)
(NDBT(6) .GT. 0) THEN
WRITE(OU, FMT1) 'Water Withdraw:',
NDBT(6),0.0, ALLBUD(6)
                WRITE(OU, FMT1)
         &
         &
                WRITE(OU, FMT1) 'Outflow:',
0.0, ARBT(6), ALLBUD(7)
WRITE(OU, FMT1) 'Final storage:',
         &
               WRITE(OU, FMT1) 'Final storage:',

NDBT(8), ARBT(5), ALLBUD(8)

ERRBD = ALLBUD(1) + ALLBUD(2) + ALLBUD(3) - ALLBUD(4)

- ALLBUD(5) - ALLBUD(6) - ALLBUD(7) - ALLBUD(8)

WRITE (OU, FMT2) 'In - Out = ', ERRBD
         &
          ENDIF
                      Calculate the cumulative water budgets
          IF (NOP .EQ. 1) THEN
CNDBT(0) = NDBT(0)
CARBT(2) = ARBT(2)
          ENDIF
DO L = 2,
                CNDBT(L) = CNDBT(L) + NDBT(L)
       -----Final pond storage
          CNDBT(8) = NDBT(8)
*-----Channel initial storage, loss, and final storage
          IF (NOP .EQ. 1) THEN CARBT(2) = ARBT(2)
                                                                     !INITIAL CANAL STORAGE
          ENDIF
DO L = 3
                CARBT(L) = CARBT(L) + ARBT(L) !SEEPAGE AND EVAPORATE
```

```
CARBT(6) = CARBT(6) + ARBT(6)
CARBT(5) = ARBT(5)
                                                   !OUTFLOW
                                                   !FINAL CANAL STORAGE.
                  Save water budgets
       IF (NOP .EQ. NSPS) THEN
     ----1. Save cumulative water budget of a single node
           WRITE (OU, 990)

FMT = '(4X, a12, t16, i3, t21, 9f10.0)'

WRITE (FMT(30:30), '(i1)') XP-1

DO N = 1, NNDS
               WRITE (OU, FMT) NDNAM(N), NDTYP(N), (CSNDBT(N,I), I = 0.8)
*----2. Save cumulative water budget of a single canal
           WRITE (OU, 995)
FMT = '(i4, 1x, 2A12, T30, 6F10.0)'
WRITE(FMT(26:26), '(i1)') XP - 1
           NARC = 0
DO 200 N = 1, NNDS
LIM1 = PTDWAR(N, 1)
LIM2 = PTDWAR(N, 2)
               DO 150 K = LIM1, LIM2

ARC = NDDWAR(K)

IF (ARC .GT. 0) THEN

I = II(ARC)
                   ELSE
                       I = JJ(-ARC)
                   ENDIF
                   J = ARCBUD(IABS(ARC), 0)
                   New Canal reach:
                   IF (J .NE. OJ) THEN
IF (K .NE. LIM1) THEN
NARC = NARC + 1
                           WRITE(OU, FMT) NARC, NDNAM(I), NDNAM(OJ), (BUD(L), L = 1, 6)
      &

\begin{array}{lll}
OJ &= J \\
DO & L &= 1, 6
\end{array}

                           BUD(L) = 0
                       \bar{\text{ENDDO}}
                   ENDIF
                      add up the water budget for current canal reach
                   DO L = 1, 6 BUD(L) = BUD(L) + CSARBT(IABS(ARC), L)
                   BUD(L),

ENDDO

IF (K .EQ. LIM2) THEN

NARC = NARC + 1

WRITE (OU, FMT) NARC, NDNAM(I), NDNAM(OJ),

(BUD(L), L = 1, 6)
 150
               CONTINUE
           CONTINUE
 200
          ----3. Save the final system water budget to the file
           950
      &
          &
      &
      &
           &
           ENDIF
WRITE(OU, FMT1) 'Outflow:',
O.O. CARBT(6), ALLBUD(7)
```

```
æ
         ENDIF
        FORMAT(10X, A, T35, 3A15)
FORMAT(/,'Nodal water budgets for whole simulation',
 955
 990
                                             T21, ' Initial Upstream Local net',
        &
       Evap-

T21, 'Initial Upstream Local net',

Downstream Final',

121, 'storage inflow inflow'

ration Rainfall Seepage Withdrawal release storage',

Node', T16, 'Node', T21, '(acre-(acre-(acre-', acre-', acre-'), acre-', acre-', acre-', feet) feet)

feet) feet) feet) feet) feet) feet)

feet) feet) feet) feet) feet)

FormAT/(/Caral water budgets for whole simulation'
       ٤,
                                                                                                        inflow',
                                                                                                         feet)',
       FORMAT(/,'Canal water budgets for whole simulation',

& /,'30,' Surface',

& /,T30,' Initial Canal evapo-

& /,T30,' Inflow storage seepage ration st
                        Initial Canal evapo- Final',

Inflow storage seepage ration storage',
Outflow',
(acre- '2000
                     (acre-
        & /,T30,'
                                              (acre-
                                                           (acre-
                                                                           (acre-
                                                                                               (acre-',
         (acre-',
'/' No. From', T18, 'To',
T30,' feet) feet)
feet)',
'/'---', T18, '---',
T30,' ----')
                                                              feet)
                                                                               feet)
                                                                                                feet)',
Name: namnum
Purpose: Search
Author: Xiaodon
Date: 9/13
                      Search the node number with the node name, or vice versa.
          or: Xiaodong Jian
: 9/13
  Date:
         SUBROUTINE NAMNUM(NNOD, NDNAMS, NDNAM, NDNUM, IW, ERR)
         IMPLICIT NONE
INTEGER NNOD, NDNUM, IW
CHARACTER NNOD, NDNUM, IW
NDNAMS(NNOD)*(*), NDNAM*(*)
         LOGICAL
                           ERR, CN
         INTEGER
        ERR = .FALSE.

IF (IW .EQ. 0) THEN

DO I = 0, NNOD

IF (CN(NDNAMS(I), NDNAM, 1)) THEN

NDNUM = I

GOTO 99

PNDIF
              ENDDO
         ELSE
              IF (NDNUM .LE. NNOD .AND. NDNUM .GE. 1) THEN NDNAM = NDNAMS(NDNUM)
GOTO 99
              ENDIF
         ENDIF
         ERR = .TRUE.
 99
         RETURN
```

END